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Abstract. It is known that the occurrence and existence of ferroresonant oscillations at the 

subharmonic frequency (SHF) in power transmission lines (PTLs) and in power supply systems is 

extremely undesirable, since they cause ferroresonant overvoltages at various frequencies. At the 

same time, there is a wide class of nonlinear electrical circuits in which the excitation of 

autoparametric oscillations (APO) at the SGC frequency forms the basis of frequency-converting 

devices that serve as secondary power sources. It is shown that three-phase nonlinear systems are, 

to one degree or another, equivalent circuits for power lines, the main elements of which are: 

longitudinal compensation capacitors, transverse compensation reactors, and transformers with 

a nonlinear characteristic. To study the pattern of excitation and maintenance of SGC at frequency 

(
𝜔

3
)in three-phase electroferromagnetic circuits (EFMC), theoretical and experimental studies 

were carried out on an equivalent model of a three-phase circuit with nonlinear inductance. To 

analyze the steady-state mode of the SGC at frequency (
𝜔

3
), the method of frequency-energy 

relations was applied. An algebraic equation is obtained that characterizes the steady-state mode 

of the SGC at frequency ω/3 in a three-phase nonlinear circuit. The frequency-converting 

properties of nonlinear inductance are also shown. The obtained results of the theoretical study 

were confirmed by experimental studies.  

Keywords: ferroresonance, self-oscillations, subharmonic, approximation, lowest 

harmonic, frequency-energy relationship, ferromagnetic element. 

 

Research into the processes of excitation of subharmonic oscillations (SHA) in three-phase 

ferroresonant circuits, first of all, seems relevant from the point of view of the development of new 

types of three-phase frequency dividers, switching devices with phase-discrete, converting 

properties, etc. In addition, the study of the physics of SHA in three-phase systems makes it 

possible to establish some patterns of overvoltage in power lines (power lines) with capacitive 

compensation caused by harmonic oscillations, and, if possible, take measures to prevent such 

anomalous conditions or mitigate their negative consequences. 

The works are devoted to experimental and theoretical study of the processes of excitation 

of SGC in three-phase EFMCs and to the identification of the main patterns of their manifestation. 

[1, 2, 3, 4, 5, 6, 7, 8, 9] 

According to [1, 6], in three-phase systems, depending on the amplitude of the applied 

voltage, initial conditions and parameters of the SGC circuit, they are excited with different 

amplitude-phase relationships and phase alternation. 

In this work, the analysis of the steady-state mode of third-order SGC in a symmetrical 

three-phase circuit (Fig. 1) is considered using frequency-energy relationships.  
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Pic. 1. Block diagram of a three-phase frequency converter. 

To simplify the analysis, we approximate the Weber-ampere characteristic of nonlinear 

inductance (identical in all phases) by a cubic polynomial of the form 

,33

  bai                                                 (1) 

where λ – is the order of the phase sequence (1, 2, 3). 

 Let us present the law of changes in fluxes created by nonlinear inductance current in 

magnetic circuits in the form: 
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 To analyze the excitation of third-order SGCs in three-phase EFMCs, we take the 

subharmonic phase shifts of individual phases to be 0, 40º, 80º, and the fundamental harmonic 

flows are symmetrical and have a direct sequence. 

Putting (2) into (1), we get: 
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Moving on to the complex form of expressing currents and voltages (assuming this is 

acceptable for a single harmonic), we have: 
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 Next, using Tellegen’s theorem [7, 10, 11], we write the third-order total power complex 

of the SGC for three-phase systems as: 
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 The joint solution and (taking into account the condition) allows us to obtain algebraic 

equations characterizing the stationary mode of third-order SGC in three-phase EFMC 

The algebraic equations for each phase of a three-phase system are: 
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where 

xkp sin                                                                                                     (9) 

xkq cos                                                                                                (10) 

313  x                                                                                                     (11) 

 31
4

3


b
                                                                                                (12) 

2

3

2

1
2

3

4

3
 

bb
a                                                                                    (13) 

 Equations (6), (7) and (8) are in the plane and can be represented as second-order curves. 
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Pic. 2. Dependencies for different values and 

When the conditions are met  
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equations (6), (7) and (8) will describe real ellipses (Fig. 2), the family of which indicates different 

conditions for the existence of the SGC for each phase depending on the circuit parameters. From 

the joint mode of the system of inequalities (14), (15) and (16) it follows that the simultaneous 

existence of third-order SGCs in all phases is possible only for values and limited by the polygon 

0KMNP0 (Fig. 3); in other cases, SGCs can only be excited in one or two phases. [1, 7]. 
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Pic. 3. Region of simultaneous existence of SGC at frequency ω/3 in all phases of a three-

phase ferroresonant circuit 

In Fig. Figure 3 shows the calculated dependences of the squared amplitude of the SGC on 

the squared amplitude of the input influence for various values of and. It can be seen that, at the 

same values, the regions of existence of the SGC are different, and the flow changes in one phase 

and decreases in other phases. A certain region of existence of the SGC is also visible, determined 

by the circuit parameters and the magnitude of the supply voltage. 

The obtained results of the theoretical study confirm the experimental data given in [1, 7]. 

Conclusion 

1. Using frequency-energy relationships, a system of equations was obtained that 

characterizes the steady-state mode of existence of the SGC at a frequency of ω/3 in a three-phase 

ferroresonant circuit. 

2. A dependence was obtained characterizing the amount of power converted by the 

ferromagnetic element at the frequency of the SGK ω/3 on the power consumption. 

3. Dependency analysis also makes it possible to determine the critical values of the circuit 

parameters that characterize the region of existence of the SGC of a particular frequency. 
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