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Abstract. The purpose of this article is to show and compare two different approaches to 

determine the period of free electromagnetic oscillations in an ideal oscillation circuit - 

elementary and Lagrange method. While the elementary method relies on traditional electrical 

circuit analysis methods, the Lagrange method approaches the problem from the point of view of 

classical mechanics. Emphasis is placed on how the relationship between classical 

electromagnetism and the Lagrangian formalism can be better explained by revealing the basic 

principles and computational techniques associated with both methodologies. 
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Introduction 

We know that periodic changes in charge, current and voltage are called electrical 

oscillations. The simplest electric vibrations occur in the vibration circuit. As a simple circuit, we 

can say a circuit consisting of a capacitor and an inductive coil connected to these capacitor covers. 

 
Figure 1. 

  In this scheme, the vibration is generated in such a way that the energy of the electric field 

in the capacitor and the energy of the magnetic field in the inductive coil rotate periodically. 

However, the total electromagnetic field energy does not change. More precisely, the total 

electromagnetic field is equal to the sum of the energies of the electric field and the magnetic field. 

𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑒𝑙 +𝑊𝑚𝑔 = 𝑐𝑜𝑛𝑠𝑡 (1) 

Electrical vibrations have some similarities to mechanical vibrations. The aforementioned 

electric field energy can be compared to potential energy, and magnetic field energy can be 

compared to kinetic energy [1]. 

We know that the potential energy reaches a large value when the mathematical pendulum 

deviates from the equilibrium state to the extreme point (𝑡 = 0). Similarly, in a pendulum with a 
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      spring, the potential energy reaches its maximum value when it moves the greatest distance 𝑥𝑚. 

Now let's compare it to the vibration contour. The capacitor in the circuit is fully charged, and 

when the switch is turned on, the energy of the electric field reaches its maximum value. It is at 

this moment that the amount of charge in the capacitor is at its maximum value. In the inductive 

coil, no current is generated [2]. 

 
Figure 2. 

In mechanical oscillations, when a quarter of the period of oscillation has passed (𝑡 =

𝑇 4⁄ ), the mathematical and spring pendulum passes through the state of equilibrium. That is, the 

kinetic energy reaches the greatest value in pendulums. At the same time, the energy of the 

magnetic field reaches its maximum value in the oscillation circuit. At this moment, the amount 

of charge in the capacitor is equal to zero, and the current generated in the inductive coil reaches 

its maximum value. 

 
Figure 3. 

 Now let's look at the situation at the moment of time 𝑡 = 𝑇 2⁄ . In this case, the capacitor is 

fully charged. But it will have the opposite charge. The current in the inductive coil is zero. That 

is, the energy of the electric field reaches its maximum value, and the energy of the magnetic field 

reaches zero. If we compare this situation with mechanical vibrations, it can be compared to a 

mathematical pendulum swinging to its extreme point on the opposite side of the starting point. A 

pendulum with a spring is in the same position.  

 
Figure 4. 
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      In general, the total electromagnetic energy at an arbitrary instant of time can be written 

as: 

𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑒𝑙 +𝑊𝑚𝑔 (2) 

𝑊𝑡𝑜𝑡𝑎𝑙 =
𝑞2

2𝐶
+
𝐿𝐼2

2
 (3) 

It can be seen from the above that if the amount of charge in the oscillating capacitor 

increases, the current in the inductive coil decreases. Conversely, if the charge decreases, the 

current increases. If we interpret these transitions in terms of phase, current and charge oscillate 

with a phase difference of 𝜋/2. 

The time dependence of the charge on the oscillation circuit is as follows: 

𝑞 = 𝑞𝑚𝑎𝑥 𝑐𝑜𝑠 𝜔𝑡 (4) 

If we take the first-order derivative with respect to time, the current is derived: 

𝐼 = (𝑞𝑚𝑎𝑥 𝑐𝑜𝑠 𝜔𝑡)𝑡
′ = −𝑞𝑚𝑎𝑥𝜔 𝑠𝑖𝑛𝜔𝑡 (5) 

𝐼 = 𝐼𝑚𝑎𝑥 𝑐𝑜𝑠(𝜔𝑡 +
𝜋

2
) (6) 

Methodology 

Below is a methodology table describing the steps of comparing the elementary method 

and the Lagrangian method to find the period of free electromagnetic oscillations in an ideal 

oscillation circuit: 

Stage Brief review 

Literature review 

A comprehensive review of the literature on the elementary 

method of analysis of oscillation periods and the Lagrangian 

method. Collect relevant textbooks and scientific articles to 

understand the principles and applications of both methods. 

Learning the 

elementary method 

To gain a thorough understanding of the elementary method used 

in the analysis of oscillatory cycles. Learning to derive the 

governing equations of free electromagnetic oscillations in the 

cycles of a simple circuit using the basic principles of 

electromagnetism and differential equations. 

Learning the 

Lagrangian method 

Study of the Lagrangian method and its application to the 

analysis of physical systems, including electrical circuits. Learn 

how to apply Lagrange's formula to oscillating cycles. 

Understanding physical interpretation and mathematical 

derivations. 

Analysis and 

comparison 

Use both methods to analyze various types of oscillatory cycles, 

including cycles of a series circuit. Compare the obtained results 

in terms of accuracy, required calculations and suitability for 

different scenarios. 

Summary 
Summarizing the conclusions, citing the strengths and 

weaknesses of each method. 

List of references 

Provide full reference to all sources given in the literature review 

and cited throughout the thesis. Acknowledgment of previous 

work in this area. 
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      An elementary (classical electromagnetism) method of determining the period of free 

electromagnetic oscillations in an ideal oscillation circuit. 

The derivation of Thomson's formula for the oscillation circuit is based on the analysis of 

Kirchhoff's law, characteristics of inductors and capacitors. To do this, it is necessary to write a 

differential equation describing the movement of current in an electric circuit and solve it to find 

the oscillation frequency or oscillation period. 

For this, the following sequence should be performed: 

An electrical circuit is analyzed to determine the capacitance of the capacitor and the 

inductance of the coil; 

Equations for an electric circuit are written based on Kirchhoff's law; 

The flowing current is expressed by the charge, and a differential equation is written that 

expresses its movement; 

The frequency of oscillation is found by solving the differential equation; 

The period of oscillation is expressed by the frequency of oscillation. 

We will dwell on this in detail. As we noted above, the energy of the full electromagnetic 

field does not change at any instant of time. The derivative of the first order in time is equal to 

zero, like the derivative of a constant number: 

(
𝑞2

2𝐶
+
𝐿𝐼2

2
)
𝑡

′

= 0 (7) 

𝑞

2𝐶
2𝑞𝑡

′ +
𝐿𝐼

2
2𝐼𝑡

′ = 0. (8) 

Here, taking 𝑞𝑡
′ = 𝐼; 𝐼𝑡

′ = 𝑞𝑡
′′ into account, 
𝑞

𝐶
𝐼 + 𝐿𝐼𝑞𝑡

′′ = 0 (9) 

is generated. If we divide both sides of the equation by current 𝐼, we get the following result: 
𝑞

𝐶
+ 𝐿𝑞𝑡

′′ = 0 (10) 

From this equation we find 𝑞𝑡
′′ : 

𝑞𝑡
′′ = −

𝑞𝑚𝑎𝑥.

𝐶𝐿
 (11) 

The dependence of the charge on time has the form of formula (4). The first-order time 

derivative from it is given in equation (5). Now let's take the time derivative from equation (5): 

𝑞𝑡
′′ = (−𝑞𝑚𝑎𝑥𝜔 𝑠𝑖𝑛𝜔𝑡)𝑡

′ = −𝑞𝑚𝑎𝑥𝜔
2 𝑐𝑜𝑠 𝜔𝑡 (12) 

Since the phase difference between current and voltage is 𝜋/2: 

𝑞𝑡
′′ = −𝑞𝑚𝑎𝑥𝜔

2  (13) 

is generated. Equations (11) and (13) represent the same quantity, so we equate them: 

−
𝑞𝑚𝑎𝑥

𝐶𝐿
= −𝑞𝑚𝑎𝑥𝜔

2 (14) 

If we make mathematical simplifications from equation (14) and find 𝜔, the following 

equation is formed: 

𝜔 =
1

√𝐿𝐶
 (15) 

 We know that equation (15) represents the cyclic frequency. If we use the relationship 

between the oscillation period and the cyclic frequency, we get the Thomson formula: 

𝑇 =
2𝜋

𝜔
 (16) 
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      𝑇 = 2𝜋√𝐿𝐶 (17) 

Lagrangian method 

The derivation of the Thomson formula for the oscillation contour based on the Lagrangian 

formalism is carried out as follows: 

Generalized coordinates for the system are defined (usually 𝑞 and 𝑞̇ for charge and 

magnetic flux) [3-4]; 

Lagrange's function is usually written as the difference between kinetic and potential 

energies; 

The Euler-Lagrange equation is used to derive the equations of motion; 

These equations are solved to find the motion of the system, including the period of 

oscillation. 

Based on the above sequence, we find the period of free electromagnetic oscillations in the 

ideal oscillation circuit. To do this, we start by finding the Lagrangian to find the period of free 

electromagnetic oscillations in an ideal oscillating chain using Lagrangian mechanics [5]. 

An ideal oscillating circuit is an electrical circuit consisting of an inductive coil (𝐿) and a 

capacitor (𝐶), usually connected in series or parallel [6].  Let's consider a simple series 𝐿𝐶 circuit. 

The total energy in the circuit is equal to the sum of the energies stored by the capacitor and the 

inductive coil.  

When the capacitor is connected to the network, the energy stored in it is given by 
1

2
𝐶𝑈2, 

where 𝑈 is the voltage across the capacitor. The energy stored in the inductive coil is 
1

2
𝐿𝐼2, where 

𝐼 is the current through the inductive coil. 

Based on the difference of energies, this gives us the Lagrangian function ℒ of the system: 

ℒ =
1

2
𝐿𝐼2 −

1

2
𝐶𝑈2 (18) 

Now we need to express 𝑈 and 𝐼 in generalized coordinates. We denote the charge of the 

capacitor as 𝑞, and the current through the inductor as 𝐼. 

Voltage in the capacitor: 𝑈 =
𝑞

𝐶
. 

Current through an inductive coil 𝐼 =
𝑑𝑞

𝑑𝑡
= 𝑞̇, where 𝑞 is the charge on the capacitor. 

Substituting these into the Lagrangian, we get: 

ℒ =
1

2
𝐿 (

𝑑𝑞

𝑑𝑡
)
2

−
1

2
𝐶 (

𝑞

𝐶
)
2

=
1

2
𝐿𝑞̇2 −

1

2𝐶
𝑞2 (19) 

Now we can find the equations of motion of the system from the following Euler-Lagrange 

equation: 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕𝑞̇
) −

𝜕ℒ

𝜕𝑞
= 0 (20) 

we get a derivative with respect to 𝑞̇: 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕𝑞̇
) =

𝑑

𝑑𝑡

𝜕

𝜕𝑞̇
(
1

2
𝐿𝑞̇2 −

1

2𝐶
𝑞2) =

𝑑

𝑑𝑡
(𝐿𝑞̇) = 𝐿𝑞̈ (21) 

and the derivative with respect to 𝑞 is equal to the following: 

𝜕ℒ

𝜕𝑞
=

𝜕

𝜕𝑞
(
1

2
𝐿𝑞̇2 −

1

2𝐶
𝑞2) = −

1

𝐶
𝑞 (22) 

We transfer the obtained expressions to the Lagrange-Euler equation: 
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𝐿𝑞̈ +

1

𝐶
𝑞 = 0 (23) 

Taking into account that the coil inductance 𝐿 is always a positive value, we divide both 

sides of the equation by 𝐿 and get the following differential equation of the second order: 

𝑞̈ +
1

𝐿𝐶
𝑞 = 0 (24) 

This is the equation of a harmonic oscillator oscillating with a cyclic frequency of 𝜔 =

√
1

𝐿𝐶
. The definition of cyclic frequency is as follows: "The time taken to turn the angle 2𝜋 is called 

cyclic frequency." That is, 𝜔 =
2𝜋

𝑇
. If we find the period and use the cyclic frequency expression 

above, we get Thomson's formula 

𝑇 =
2𝜋

𝜔
= 2𝜋√𝐿𝐶 (25) 

 for the period of free electromagnetic oscillations in an ideal oscillatory chain. 

Discussion of the obtained result 

Approach: The elementary method relies on circuit analysis techniques and differential 

equations, while the Lagrange method treats the circuit as a physical system and applies the 

principles of classical mechanics. 

Complexity: The Lagrangian method may seem a bit more complicated because it involves 

concepts from classical mechanics and calculus of variations. However, for some systems 

Kirchhoff's laws and differential equations lead to simpler and more accurate solutions compared 

to direct application. 

Generalization: The Lagrangian method is more generalizable to more complex systems 

and provides a deeper physical explanation than the elementary method, which is often tailored to 

specific electrical circuit configurations. 

Educational perspective: The elementary method is often taught first in circuit analysis 

courses because of its direct application to circuit problems. The Lagrangian method can be 

introduced later in advanced courses or in courses involving classical mechanics. 

Conclusion 

In summary, although both methods can be used to find the period of free electromagnetic 

oscillations in an ideal oscillating circuit, they differ in approach, complexity, generalization, and 

educational content.  

The choice between them depends on the specific problem, the required level of detail and 

the level of knowledge of the person performing the analysis. 
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