CREATIVE APPROACHES TO THE SOLUTION OF TASKS IN SCHOOL TEXTBOOKS

${ }^{1}$ Z.Q.Erkaboyeva, ${ }^{2}$ M.G.Teshaeva

${ }^{1}$ Teacher of mathematics for 34th specialized school of Kushrabot district of Samarkand region
${ }^{2}$ Student of mathematics and informatics of Uzbekistan-Finland Pedagogical Institute https://doi.org/10.5281/zenodo. 7682758

Abstract. In this thesis, the concept of the distance between two intersecting straight lines, which is introduced as a problematic issue in general education school textbooks and has wide applications in practice, is described and the methods of finding this distance are described in detail.

Keywords: intersecting straight lines, parallel straight lines, parallel planes, distance between parallel straight lines, distance between parallel planes, volume of the pyramid.

In modern mathematics textbooks, great emphasis is placed on dividing straight lines and finding the distance between them. The reason for this can be shown by the fact that finding the distance between straight lines is widely encountered in the problems of mechanics and differential geometry and has wide applications in life.

Below are some basic definitions of bisecting straight lines and finding the distance between them, with plenty of examples. First, let's define straight lines:

Definition 1. The intersection of two straight lines that do not lie in the same plane in space are called straight lines (Fig. 1).

Figure 1
Before introducing the concept of distance between two intersecting straight lines, we define the concept of distance between two shapes.

Definition 2. For points F_{1} and F_{2} and arbitrary $A_{1} \in F_{1}, A_{2} \in F_{2}$ of the given forms $B_{1} \in$ $F_{1}, B_{2} \in F_{2}$ if inequality is appropriate. Points $\left|A_{1} A_{2}\right| \leq\left|B_{1} B_{2}\right|$ are called the closest points of the given shapes. The distance between A_{1} va A_{2} forms means the distance between their nearest points (if it exists).

Now we present several definitions that are convenient for finding the distance between two intersecting straight lines in practice:

Definition 3. The distance between the nearest points of two intersecting straight lines is called the distance between the straight lines.

Definition 4. The distance between parallel planes where two intersecting straight lines are located is called the distance between straight lines.

SCIENCE AND INNOVATION

Definition 5. The distance from one of the two intersecting straight lines to the parallel plane on which the second intersecting straight line lies is called the distance between these lines.

Below we show the process of solving the problem in several ways:
Problem solving. A right prism $A B C D A_{1} B_{1} C_{1} D_{1}$ whose base is a square is given. If the side of the base of the prism is 4 and the height is $2 \sqrt{2}$, find the distance between the diagonals $D A_{1}$ and $C D_{1}$ (Fig. 2).

Figure 2

Note: Below (ABC) - the inscription in the form ABC indicates the plane.

1-way. It is known that $C D_{1}$ lies on the diagonal $\left(C B_{1} D_{1}\right)$. Also, from the fact that $D A_{1} \| C B_{1}$ follows that the straight line $D A_{1}\left(C B_{1} D_{1}\right)$ is parallel to the plane. So, the distance between the planes $D A_{1}$ and $\left(C B_{1} D_{1}\right)$ is equal to the distance between the diagonals $D A_{1}$ and $C D_{1}$ according to definition 5. In particular, to find this distance, it is enough to find the distance from the point $\mathrm{A}_{-} 1$ of the straight line $D A_{1}\left(C B_{1} D_{1}\right)$ to the plane (Fig. 3).

Figure 3
We designate the points of intersection of the diagonals of the bases of the given right prism by O and O_{1}, respectively.

It is known that the planes $\left(A C C_{1}\right)$ and $\left(C B_{1} D_{1}\right)$ intersect in the straight line $O_{1} C$.
So, to find the distance from A_{1} point $\left(C B_{1} D_{1}\right)$ to the plane, it is enough to find the distance A_{1} from point $O_{1} C$ to the straight line $A_{1} H$ (Fig. 4).

Figure 4

According to the condition of the problem, $C_{1} C=2 \sqrt{2}, C_{1} D_{1}=4$. So, $\triangle C O_{1} C_{1}$ for $C_{1} O_{1}=C_{1} C=2 \sqrt{2}$ right triangle. From this comes the equality $\angle C O_{1} C_{1}=45^{\circ}{ }^{\wedge} 0$. Also, $\angle \mathrm{CO}_{1} \mathrm{C}_{1}=\angle \mathrm{HO}_{1} \mathrm{~A}_{1}$
$\triangle A_{1} H O_{1}$ - in a right triangle, $A_{1} O_{1}=2 \sqrt{2} v a \sin \angle H O_{1} A_{1}=\frac{\sqrt{2}}{2}$. Therefore, $H A_{1}=A_{1} O_{1}$. $\sin \angle H O_{1} A_{1}=2 \sqrt{2} \cdot \frac{\sqrt{2}}{2}=2$.

2-way. $\left(B D A_{1}\right)$ and $\left(C B_{1} D_{1}\right)$ planes are parallel to each other, because $D A_{1}| | C B_{1}, C D_{1}| | B A_{1}$. Also, the straight lines $A_{1} D$ and $C D_{1}$ lie on $\left(B D A_{1}\right)$ and $\left(C B_{1} D_{1}\right)$ planes, respectively. So, to find the distance between these straight lines, it is enough to find the distance between $\left(B D A_{1}\right)$ and $\left(C B_{1} D_{1}\right)$ planes. In turn, to find the distance between these planes, it is necessary to find the distance from the point O on the plane $\left(B D A_{1}\right)$ to the plane $\left(C B_{1} D_{1}\right)$.

Figure 5
$\left(O C O_{1}\right)$ and $\left(C B_{1} D_{1}\right)$ planes are perpendicular to each other and intersect in a straight line CO_{1}. We pass $O H$ perpendicular from point O to straight line CO_{1}. The length of this section OH is equal to the distance from the point $O\left(C B_{1} D_{1}\right)$ to the plane, so it is also equal to the distance between the straight lines $A_{1} D$ and $C D_{1}$ (Fig. 5). We find the length of this section.
It is known that $A A_{1}=O O_{1}=2 \sqrt{2}, A O=C O=2 \sqrt{2}$. . Also from $\triangle O A A_{1}: A_{1} O=C O_{1}=$ $\sqrt{A A_{1}^{2}+A O^{2}}=4$.
$\triangle \mathrm{OHO}_{1} \sim \triangle \mathrm{COO}_{1}$. Because the $O O_{1}$ - side is general and $\angle \mathrm{CO}_{1} \mathrm{O}=\angle O O_{1} \mathrm{H}$. So, $\frac{O H}{\mathrm{CO}}=$ $\frac{O O_{1}}{C O_{1}}$. From this, $O H=\frac{C O \cdot O O_{1}}{C O_{1}}=\frac{2 \sqrt{2} \cdot 2 \sqrt{2}}{4}=2$.

3-way. Method of volumes

It is known that $D A_{1} \| C B_{1}$ and $C D_{1} \| B A_{1}$ relations are relevant. From these conditions, the relation $\left(B D A_{1}\right) \|\left(C B_{1} D_{1}\right)$ is derived (Fig. 6).

Figure 6
$B C D A_{1}$ - Let's look at the pyramid (Fig. 7).

Figure 7
We denote by h the height dropped from the end of this pyramid C to the base $B D A_{1}$ The length of this height is equal to the distance between the diagonals $D A_{1}$ and $C D_{1}$. Because this length is equal to the distance from the end C of the diagonal $C D_{1}$ to the plane $B D A_{1}$ lying on the diagonal $D A_{1}$. We find the length of this height.

From the conditions of the problem, it can be directly found that $B D=A C=4 \sqrt{2}, A O=$ $2 \sqrt{2}$. From right angle $\triangle O A A_{1} O_{1}: A_{1} O=C O_{1}=\sqrt{A A_{1}^{2}+A O^{2}}=4$.

We find the volume of the pyramid $B C D A_{1}-$ - through the base $B D A_{1}$ - and h - height:

$$
V_{B C D A_{1}}=\frac{1}{3} S_{B D A_{1}} \cdot h=\frac{1}{3} \cdot \frac{A_{1} O \cdot B D}{2} \cdot h=\frac{8 \sqrt{2}}{3} \cdot h .
$$

We find the volume of the pyramid $B C D A_{1}$ - by the base $B C D-$ and the height $A A_{1}$:

$$
V_{B C D A_{1}}=\frac{1}{3} S_{B C D} \cdot A A_{1}=\frac{1}{3} \cdot \frac{B C \cdot C D}{2} \cdot A A_{1}=\frac{16 \sqrt{2}}{3} .
$$

So, $V_{B C D A_{1}}=\frac{8 \sqrt{2}}{3} \cdot h=\frac{16 \sqrt{2}}{3} \Rightarrow h=2$.

REFERENCES

1. Mirzaahmedov M.A., Ismailov Sh.N., Amanov A.Q. Geometry. Part II. LLC "Extremum Press", 2017, Tashkent.
2. Pogorolev A.V., Geometry. 3rd edition. "Teacher" creative publishing house. Tashkent20054.
3. Гусятников П.Б., Резниченко С.В. Векторная алгебра в примерах и задачах. - М.: Высшая школа, 1985. - 232 с. Архивная копия от 10 января 2014 на Wayback Machine. https://shkolkovo.net/
