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Abstract. The article discusses the modeling of electron motion in a one-dimensional 

potential well. Analytical and numerical methods and results for solving the Schrödinger equation 

for the problem considered are presented. The results of the numerical solution of the Schrödinger 

equation for rectangular, triangular, quadratic and exponential potentials are also presented. 
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Introduction 

If initially quantum mechanics was perceived as a new natural philosophy, causing 

numerous disputes about its foundations and methods, then in the 21st century it is increasingly 

viewed as an applied science, making it possible to study effects of interest for applications, 

simulate physical processes, calculate new electronic devices, et al [1, 2]. 

In the study of quantum mechanics, a special role belongs to problems that have an exact 

solution, when the solution to the Schrödinger equation is represented in the form of algebraic 

expressions and functions. At the same time, it is known that the number of precisely solvable 

problems is very limited. In fact, an exact solution can only be found for systems with high 

symmetry. In this case, the system has a complete set of operators commuting with the 

Hamiltonian, and such a system is integrable. For real physical systems, and especially many 

partial ones (atoms, molecules, solids), the Schrödinger equation is non-integrable, therefore, for 

its analysis it is necessary to use approximate and numerical methods [3, 4]. 

At the dawn of quantum mechanics, people dealt only with atomic systems. At the end of 

the last century, semiconductor technology reached such a level that it became possible to produce 

structures whose dimensions are comparable to the characteristic de Broglie wavelength of 

electrons. Let's try to understand why this became possible and what we can “order” from 

technologists who produce systems with ultra-small dimensions [5, 6]. 

From a general theoretical point of view, the calculation of electronic states in layered 

structures should be carried out by solving the corresponding three-dimensional problem on the 

band structure of the material. Currently, sophisticated methods have been developed for computer 

calculation of quantum states in nanostructures, based on microscopic models of pseudo potential 

or strong coupling. Nevertheless, these methods are not yet omnipotent and not omnipotent, and 

in specific work it is the approximate methods that turn out to be more convenient and effective 

[7, 8]. 

In approximate approaches, the solution inside each layer of a multilayer structure is 

written in the form of a linear combination of independent volumetric solutions, and for matching 
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      at hetero boundaries, boundary conditions are introduced for the envelopes of the electron wave 

function and their derivatives along the normal coordinate. 

Calculations of electronic states in semiconductor nanostructures, performed using the 

effective mass method, are based on solving the stationary Schrödinger equation, which is one-

dimensional for the movement of electrons in the direction perpendicular to the plane of the layers: 
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here m - is the effective mass of the electron, E- is its total energy, U(z)- is the potential 

relief for the electron along the z axis directed in the direction perpendicular to the plane of the 

layers. The solution to this Schrödinger equation is the z-component of the envelope of the wave 

function (z,E), which characterizes the motion of electrons in the direction perpendicular to the 

plane of the layers and determines, up to normalization, the probability of finding an electron with 

energy E moving along the Oz axis at a point with the coordinate z. 

For a simple band structure, the boundary conditions at the interface between layers A and 

B in the general case have the form: 
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where A, B - are the values of the wave function envelope at the interface from the side of 

layer A and from the side of layer B, respectively, 
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mA,B -effective masses of electrons in layers A and B, respectively, l- is an arbitrary 

parameter with the dimension of length, introduced so that the elements of the matrix tij are 

dimensionless. The choice of tij values is usually postulated or carried out by comparison with the 

results of an experiment or calculation within the framework of some microscopic model. The 

boundary conditions associated with the name Bastard are used most often: 
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By solving equation (1) with boundary conditions (3), it is possible to construct the 

envelopes of the wave functions of electrons with different energy values E. If you form a thin 

layer of narrow-gap material between two sufficiently thick layers of wide-gap material, then for 

an electron moving in a direction transverse to the planes of the layers, a potential relief can be 

formed, which is called a rectangular potential well [10]. 

For describe scattering processes in a quantum medium, it is necessary to solve the 

Schrödinger equation with the corresponding boundary conditions. For a one-dimensional 

quantum well, i.e. for 
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The solution to the Schrödinger equation has the form 
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where q2 = 2 m (E + V0),  k
2 = 2 mE. 

Coefficients a, b, r, t are determined from the boundary conditions, i.e. conditions for the 

continuity of the wave function and its derivative at x = 0 and at x=L 

(0)=1+r, ’(0)=ik(1-r),   (6) 

’ (L)-ik (L) = 0     (7) 

From here you can determine reflections and transmissions: 

r = -1 + (0), t =  (L)     (8) 

Let us consider a method for numerically solving the Schrödinger equation. Let us write 

the Schrödinger equation for the wave function n= (xn) (n = 0, 1,..,N), given in a set of discrete 

xn = n points: 

n+n+unn=0      (9) 

where 

,/)(22 22 nn VEmu   Vn=V(xn)   (10) 

Then the boundary conditions take the form 

,2)2/( 001  ikiku      (11) 

n+1=Rnn     (12) 

From here we obtain a recurrence relation for the auxiliary functions Rn 

RN-1=-1/(uN/2+ik)    (13) 

Now the functions RN-2,RN-3, …,R1,R0 are determined starting from RN-1 in the opposite 

direction. After determining R0 

)]2/(/[2 000  ikuRik    (14) 

0 is determined, and then 1, 2, …, N are determined from (12), then the reflection and 

transmission coefficients are determined from expression (8). 

 

Results and discussions 

Using the above expressions for the analytical and numerical solution of the Schrödinger 

equation, a visual basic program was created for studying the energy dependence of the electronic 

transition and reflection coefficients for potential quantum wells of arbitrary shape. A special 

feature of the program is that it allows you to solve the Schedinger equation for any potential, and 

the results are automatically sent to MS Excel and graphs are plotted [9]. 

For example, in Fig. Figure 1 shows the dependence of the squared modulus of the wave 

function of electrons with different energies for a rectangular quantum well, and Fig. Figure 2 

shows the dependence of the transition and reflection coefficients on the electron energy. This 

figure also shows the results of the wave function expression obtained by the analytical method. 
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Fig. 1. Dependence of the squared modulus of the wave function of electrons with different 

energies for a rectangular quantum well. (Dots – approximate calculation, lines – analytical 

solutions). 

 

 
Fig. 2. Dependence of the reflection and transmission coefficients of electrons on energy. 

 

In Fig. 3 shows graphs of the energy dependence of transmission coefficients for 

rectangular, triangular, quadratic and exponential potentials. The figure shows that the 

transparency coefficients for rectangular, triangular and quadratic potentials are almost the same, 

and for exponential potential the growth is slower. 
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Fig.3. Graphs of energy dependence of transmission coefficients for rectangular, triangular, 

quadratic and exponential potentials. 

Conclusions 

Thus, in this work, a program was created to simulate the motion of an electron in a one-

dimensional potential well. A special feature of the program is that it allows you to solve the 

Schrödinger equation for any potential, and the results are automatically sent to MS Excel and 

graphs are plotted. 

The most special aspect of the program, that is, the method for numerically solving the 

Schrödinger equation, is that it allows you to calculate the wave function, as well as transmission 

and reflection coefficients, not only for rectangular, but also for arbitrary potentials. As can be 

seen from the results obtained, the smaller the calculation step, the closer the approximate results 

are to the analytical solution. This program also allows you to simulate the behavior of electrons 

in multilayer quantum nanostructures. 
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