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Abstract. This article explores spectral analysis methods for muscle activity biosignals and 

presents experimental results. The research introduces a novel approach to this analysis, aiming 

to identify specific characteristics of muscle biosignals. Using the proposed method, muscle 

biosignals were recorded and processed during athletes' training sessions. 
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Introduction. Today, computer systems pervade every facet of our lives, including the field 

of medicine. The modernization of our country's medical sector necessitates such integration. 

Medical devices, diagnostic tools, and testing equipment increasingly depend on computer systems 

for their operation and control. 

Biological signals, acquired through various means, undergo analysis to extract pivotal 

information. Standard techniques for signal analysis, such as filtering, digitization, processing, and 

storage, are applicable to many biological signals. 

By processing electromyography (EMG) signals, specific outcomes become attainable. The 

digitization of received data is paramount due to its varied nature and transmission methods. For 

instance, data might be relayed through Bluetooth, Wi-Fi, or multiple ports, taking forms such as 

packets, text, graphics, or files. 

Electromyography (EMG) measures the electrical activity produced by muscle fibers 

during contraction, resulting in electromyogram (EMG) signals. These signals are indicative of 

muscle tension [1,2]. EMG signals play a crucial role in numerous clinical and biomedical 

applications, from identifying muscular abnormalities to monitoring muscle activity. 

EMG signals primarily serve to: 

Pinpoint the timing of muscle activation. 

Gauge the force muscles produce. 

Examine muscle fatigue through the signal's frequency spectrum. 

These uses underscore the multifaceted nature of EMG signals. The first focuses on the 

exact timing of muscle activation, vital for grasping motor control and coordination. The second 

quantifies muscle force, essential in biomechanics and rehabilitation. Lastly, frequency spectrum 

analysis of EMG signals assesses muscle fatigue, shedding light on muscle conditions during 

extended or intense activities. 

EMG signals are valuable in diagnostic walking laboratories and are employed by trained 

clinicians for tasks such as biofeedback and ergonomic assessments. Their significance as 

biosignals spans biomechanics, motor management, neuromuscular physiology, movement 
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      disorders, postural control, and physiotherapy (Reaz et al., 2006). Clinical applications, such as 

gait analysis and coordination studies, necessitate the precise pinpointing of muscle activation 

timing and duration. Clinical specialists often favor visual inspection, granting a thorough signal 

evaluation. Additionally, algorithm speed becomes pivotal for specific applications, as does 

maintaining accuracy (Merlo et al., 2003). 

Detecting voluntary muscle contractions is a crucial aspect of EMG processing. Its 

applications range from biomechanics to clinical diagnostics, rehabilitation tool development, and 

more. Through precise detection and analysis of these contractions via EMG, one can glean 

insights into human body mechanics, decipher movement patterns, muscle functions, and 

performance. Additionally, EMG-based diagnostics offer insights into muscle disorders, motor 

control deficits, and neuromuscular conditions. Data derived from EMG processing is paramount 

for creating efficient rehabilitation tools and interventions, enabling the formulation of tailored 

treatment plans and progress monitoring. 

Methods and Algorithms for Processing Biosignals. The clinical assessment of a patient 

involves multiple stages, each with its distinct objective. Paraclinical techniques, such as 

electromyography (EMG), supplement this process by providing additional data that bolsters 

confidence in clinical hypotheses. Evaluating the efficacy of treatments and tracking disease 

progression are essential for pinpointing the specific type of pain or pathology. Throughout these 

stages, the primary goal of an EMG study remains to amass detailed information in the most 

efficient timeframe. 

Figure 1. Appearance of the EMG signal (a signal recorded as a result of a single contraction 

and expansion of the biceps muscle). 

 

Biosignals can be categorized based on multiple characteristics, including waveform and 

statistical structure. A primary distinction is between continuous and discrete signals. A continuous 

signal, represented as X(t), varies as a function of continuous time 't.' Typically, signals derived 

from biological events are continuous [3]. 

Figure 2. Block scheme of signal analysis. 
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      Rohit Gupta and Ravinder Agarwal Method. The analysis of the electromyographic (EMG) 

signal adopts a block scheme comprising the following stages [4,5]: 

 

Figure 3. Block scheme of EMG analysis 

 

EMG Signal Acquisition: Contemporary hardware is employed to record the EMG signal, 

capturing the muscles' electrical activity. 

Filtering: The acquired EMG signal undergoes filtering to eliminate extraneous noise and 

artifacts, thereby improving the signal's quality. 

Windowing: The refined signal is divided into smaller sections or 'windows,' making it 

conducive for more in-depth analysis and processing. 

Feature Extraction: Specific characteristics of the EMG signal, such as amplitude, 

frequency, and time-domain traits, are extracted. These details furnish invaluable insights into the 

nature of muscle activity. 

Feature Normalization: To guarantee uniformity and comparability across diverse signals 

or individuals, the extracted attributes are normalized. This step considers variations in signal 

amplitude and other potential factors. 

Feature Vector Formation: By amalgamating the normalized features, a feature vector is 

formulated. This vector becomes the foundation for the subsequent phases of EMG signal analysis 

and interpretation. 

Figure 4. Block scheme of the analysis of muscle activity biosignals. 

The biosignals from muscle activity, once processed, underwent analytical scrutiny using 

the method proposed by Rohit Gupta and Ravinder Agarwal. This analysis leveraged a suite of 

machine learning algorithms, namely Decision Tree (DT), k-Nearest Neighbor (kNN), Artificial 

Neural Network (ANN), Support Vector Machine (SVM), and Linear Discriminant Analysis 

(LDA) [4,5,15]. The study by H. Jaffer and H. Ghaeb focused on devising a system for diagnosing 

neuromuscular disorders by analyzing muscle activity biosignals [6]." These adjustments aim to 

enhance clarity and maintain consistency in the structure of your sentences. If you have any further 

questions or need additional assistance, feel free to let me know! 
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      The block scheme for electromyographic (EMG) signal analysis encompasses the 

following stages: 

Recorded EMG: The electromyographic signal is captured through specialized sensors that 

detect the electrical activity of muscles. 

Conventional Filtering: The acquired EMG signal undergoes specific filtering techniques, 

such as DC removal and band-limit filtering (typically in the 50-150 Hz range). These filtration 

methods aim to improve the quality and clarity of the biosignals for subsequent analysis. 

Feature Extraction: Distinctive features are extracted from the biosignals to provide 

meaningful insights. Within the realm of EMG signal analysis, standard features encompass 

muscle fatigue (ascertained using the Fast Fourier Transform - FFT), signal power, and 

electrochemical delay characteristics. 

The studies by the previously mentioned scientists were meticulously reviewed, 

culminating in the proposition of a dedicated algorithm for analyzing muscle activity biosignals, 

as depicted in [Fig 5]. 

Segmentation
Analog Digital 

Convertor
Spectral Analysis

Result

Signal

 
Figure 5. Block scheme of the spectral analysis of muscle activity biosignals. 

 

The block scheme for the spectral analysis of muscle activity biosignals comprises the 

following stages: 

Analog-to-Digital Conversion: The biosignals of muscle activity undergo conversion from 

analog to digital form using an analog-to-digital converter. For this purpose, the study employed 

the BTSFreeEMG sensor, equipped with both an analog-digital converter and a primary filter. 

Segmentation: The biosignals are divided into smaller segments to facilitate subsequent 

analysis. Based on empirical research and analytical experiments, a segmentation length of 200ms 

and a sliding section of 100ms were identified as optimal parameters. 

Spectral Analysis: At this juncture, the biosignals are assessed in the frequency domain. 

Techniques such as the Periodogram and Welch methods are utilized, yielding amplitude-

frequency parameters that shed light on the signals' frequency content. 

Result Presentation: The insights gleaned from the feature extraction process are visualized 

using graphs and tables, offering a holistic overview of the research findings. 

To effectively execute and analyze our research objectives, setting up organized 

experiments was crucial. In this investigation, exercises were conducted with varying weights—

specifically 1 kg, 3 kg, 5 kg, and 7 kg. Each weight was subjected to a testing duration spanning 5 

weeks. 



 

SCIENCE AND INNOVATION 
INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 2 ISSUE 11 NOVEMBER 2023 

UIF-2022: 8.2 | ISSN: 2181-3337 | SCIENTISTS.UZ 

 252  

 

      Welch's method provides an avenue to quantify the spectral power density. By employing 

this technique, one can discern and study fluctuations in the spectral power density of the acquired 

signal. 

Figure 6. Power Spectrum Density. 

 

A graph is instrumental in illustrating the Power Spectrum Density (PSD) in relation to its 

corresponding wavelength. Such a visual depiction elucidates the distribution of energy over 

varied wavelengths, granting a deeper understanding of the signal's spectral attributes. 

Both the periodogram and Welch methods offer different modification capabilities. Specifically, 

the periodogram accommodates a range of alterations. Figure 7 showcases the energy output as 

interpreted by the fast Fourier transform via a periodogram. 

Figure 7. Graphical representation of signal’s power. 

 

Results and discussion. The study's findings stem from the recorded and analyzed 

biosignals during the athlete's 35-day exercise regimen. This time frame facilitated the monitoring 

of shifts in the athlete's physiological and medical conditions and performance fluctuations. The 

results are depicted in Table 1, Figure 8, and Figure 9. 

As illustrated in Table 2, the variations in power are graphically depicted in Figures 10 and 

11. 
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      Table1. Results Obtained By The Welch Method 

 Week 1 Week 2 Week 3 Week 4 Week 5 

1 kg 0,99 3,23 3,25 3,34 4,32 

3 kg 3,64 4,56 4,59 6,06 6,07 

5 kg 7,62 8,11 8,99 9,48 11,47 

7 kg 7,61 9,5 9,5 9,68 11,68 

9 kg 14,86 15,06 15,45 16,07 16,09 

 

Table2. Results Obtained By The Periodogramm Method 

 1 kg 3 kg 5 kg 7 kg 9 kg 

Week 1 0,08 2,65 6,33 7,43 13,47 

Week 2 1,06 3,09 7,33 8,83 14,15 

Week 3 2,20 3,15 8,15 9,58 14,39 

Week 4 2,23 4,23 8,66 10,67 15,11 

Week 5 2,48 5,19 9,49 11,08 15,17 

 

The periodogram method is adept at revealing power variations within muscle activity 

biosignals. For this study, weights of 1 kg, 3 kg, 5 kg, 7 kg, and 9 kg were employed. Across a 

span of 5 weeks, the power shifts in muscle activity biosignals were chronicled during exercises 

using the specified weights. The outcomes of the experiment were encouraging, demonstrating 

significant power alterations. Comprehensive data on these power transitions can be found in Table 

2. The exercise recordings for each weight were undertaken over 5 days weekly. 

 

 
Figure 8. Results from the application of the Welch method in the experimental study. 
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Figure 9. Graphical visualization illustrating the outcomes of the Welch method. 

 

 
Figure 10. Graphical depiction of outcomes obtained using the Periodogram method in the 

experiment. 

 

 
Figure 11. Visualization illustrating the analysis conducted using the Periodogram method. 

 

Experiments were conducted to record power changes in the biosignals of human biceps 

brachii muscle activity using weights of 1 kg, 3 kg, 5 kg, 7 kg, and 9 kg. These findings hold 

considerable importance for tracking both the physical and biological states of athletes during 

training sessions. By employing the methods described, it is possible to efficiently capture and 

monitor analytical results, drawing from informative parameters within the biosignals of muscle 

activity. 

The research underscores that tailored exercises designed to bolster the health and physical 

development of athletes can proactively address potential challenges they might encounter in their 

future endeavors. 
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      Conclusion. This paper delves into the examination of algorithms employed in the medical 

domain for the analysis of biological signals. Our experiments underscore the profound influence 

of rehabilitative and analytical algorithms within the realm of sports. Notably, tailored exercises 

crafted for athletes or individuals undergoing rehabilitation can effectively track their 

physiological transitions and furnish them with consistent workout regimes. 

The analysis extended to various facets of muscle activity biosignals, emphasizing the intrinsic 

features linked to them. Techniques for feature reduction and selection pinpointed the most salient 

and informative characteristics. Grounded in this scrutiny, algorithms were crafted to discern the 

prime features that showcase superior accuracy and efficacy in deciphering muscle activity 

biosignals. 
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