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Abstract. The application of the method of additional argument to a system of high-order 

partial integro-differential equations is relevant. Kyrgyz scientists have considered applications 

of this method to a system of partial differential equations of first order. In this paper, the system 

of partial integro-differential equations of the second order with initial conditions is reduced to a 

system of integral equations. 
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Investigations of various classes of systems of partial differential equations of the first 

order on the base of the method of additional argument were considered in [1-3]. 

           Let ))(( 2
)( TGC k be the class of functions being continuous and bounded together with 

their derivatives up to the k-th order in G2(T)=[0,T]R. 

Considered the system of partial differential equations of the second order of type
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The paper proposes a new way of reducing the system of partial integro-differential 

equations to the system of integral equations. Let us introduce some notation. Using method of 

additional argument. 

In this paper, to reduce problem (1), (2) to a system of integral equations, the following 

notation is used: 
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      Through 2,1),,,(),,,( ixtsqxtsp ii denote, respectively, the solutions of the following 

integral equations: 
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Differential operator: 
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,2,1),,()],([),(  ixtuxtkDxt iii                                                                                      (5) 
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          Lemma 1. The system of partial integro-differential of second order (1) with the initial 

condition (2) is equivalent to the following system of integral equations: 

,)),(),,(,,(),(),(
2

1

),(),(
2

1
),(

2

1
)),,0((

2

1
),(

21

00

3

0

21

dsqsuqsuqsfdsqsuqs

dsqsqsuxtxtqxt

iii

t

iiii

t

i

iii

t

iiiiii













                                 (6) 

   

t

iiiii dsxtspsxtpuxtu

0

0 ),,(,),,0(),(  ,  i=1,2,                                                      (7) 

where 

  .2,1,)(),(),,(),(2 0
1   ixxtuuxtxt itiiii  . 

Proof. First, differentiating (6), (7), we prove that the system of integral equations (6), (7) 

satisfy equation (1) and initial condition (2). 

From (6) we have: 
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Taking into account (5), from (8) we obtain (1). Therefore, (2) also holds. 

        Let us now show that, in turn, the solution to problem (1), (2) is a solution to system of integral 

equations (6)–(7). To do this, we write equation (1) in the form 

,2,1),,,,(2),(),(),(),();,()],([ 21
32  iuuxtfxtuxtxtxtиxtzxtkD iiiiiiii              (9) 

where 

.2,1),,(),(),(2);,( 1  ixtuxtxtиxtz iiiii   
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      The solution of problem (9), (2) by the method of an additional argument is reduced to the 

integral equation (6). It follows from the notation (3) that (7) 

          In equation (6), substituting (7), we obtain an integral equation with respect to  
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       Lemma 2. There is such a ,0T  that the integral equation (10) has a unique solution in 

*))(( 2 TGC . 

Proof. Let us show that Eq. (10) has a unique, continuous solution in the domain )(
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Let us show that, for TT , the operators Ai are contraction operators 
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Denote by 0T  the positive root of the equation .)(
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It remains for us to show that the operators Ai compresses the distance between elements. 

The following estimate is valid 
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Denote by 1T the positive root of the equation .1)(1  T  

It follows from this that the operators Ai under },min{ 10 TTTT  
 perform a 

contraction mapping. Then the equation defines a unique solution that belongs to this ball. This 

solution can be obtained by the method of successive approximations. 

Conclusion. Using the proposed scheme of reduction to an integral equation, one can 

construct solutions of linear partial differential equations of the second order with given initial 

conditions. 
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