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Abstract. The question of representing linear groups (and related constructions) by
generating elements and defining relations has always been of interest in general combinatorial
group theory. Today, a large amount of magazine and book materials have already accumulated
in this direction. New research methods also emerged. One of them is the universal combinatorial
transformation method, the essence of which is to transform words of the selected generative
alphabet of the group under study to their standard forms. The paper provides a description

through generators and defining relations of generalized m-triangular groups T,,(R),n =2

defined over an arbitrary non-zero associative ring. Based on this result, combinatorial

descriptions of the projective factors of the named groups PT,, (R) are also found. The solution

to these problems is based on the mentioned transformation method.
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INTRODUCTION

The representation of linear (and close to them) groups in terms of generators and relations
is one of the main issues in combinatorial group theory. This section has long grown into a special
direction in general theory and is currently experiencing rapid development. Within the framework
of this topic, we can note the remarkable (and already classic) results [1]-[4]. The proposed work
is also devoted to the named section, or rather, here we will give a combinatorial description of
generalized m-triangular groups of degree n > 2 over an arbitrary associative ring.

Throughout, we assume an arbitrary nonzero associative ring for which the existence of 1
is not necessary. Through o, as always, we denote quasi-multiplication in R T.e.

Xoy=x+Xxy+y for elements x,yeR. Element x from is called quasi-invertible if for it
x0y=0=yox at some v € R. Given a quasi-reversible, its quasi-inverse is always determined

uniquely and it is denoted as y = x’. The set of all quasi-invertible elements R°fromR is non-

empty (for example O R’) and it forms a group relative to the operation o . Unitin R" element
0 will serve. We call this group the quasigroup of the ring.
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In the special case, putting instead the ring of (upper) triangular matrices 7, (R), we come
to the concept of a generalized triangular group [7,(R)]° =7 (R) degrees n above the ring R .
For natural m,1<m <n, by analogy with [5] (see p. 24) we denote by 7, (R) set of matrices
from 7”(R) from m-1 zero diagonals above the main one, i.e.

T, (R)y={x=(x;)eT)(R):o< j—i<m—x, =0}.

Let us show that the introduced sets form subgroups 7, (R). To do this, we just need to
check the closedness 7, (R) with respect to matrix quasi-multiplication and the operation of
taking a quasi-inverse element. Let, along with the above x = (x;) put from 7, (R) another matrix

y=(y;). As is easy to see, for positions <i, j>, 0 < j—i<m, quasi-products of these matrices

satisfy the formulas (xo y), =x, + Z XYy t V5= inky,g. .

1<x<n 1<x<n

Sincewhen k#i0<j—i<m &i<k<j—>0<k—i<m,firstfactors x,, i <k < j,the
last amount will be equal to zero. When k =iwe have y, =0. Thus, the equalities (xoy), =0
true for all the above positions <i, j> , those isolation in 7}, (R) occurs.

To continue our reasoning further, we need the following notation: for ¢ € R* d,(¢)—
matrix of 7'’ (R), differing from the zero matrix only by position <i, i > , where is the element g; the
same way t,(4), i # j, will mean matrix (also from 7’ (R)), obtained from the zero matrix by
replacing its position <i, j> for argument A€ R (they are called quasi-transvections). For the
introduced matrices the formulas are obvious: d/ (&) = d, (&), tl./j (A =1,(=4).

()

Just now x— arbitrary matrix of 7, (R). From equality (sf) of this work (see paragraph I)
it follows thatx’ = £/ o...o £/ od!(g,)o...od] (&)

(f: — some words composed of quasi-products of transvections of the form ¢, (4, )). Application to

the right side of the last equality of relations (') will lead us to a representation of the matrix x/
consisting of a quasi-product of (a finite number of) diagonal letters d, (¢) and quasi-transvections

£,;(*). And this, according to the closedness already established above, means belonging to

T° (R) not only x, but also its quasi-inverse matrix x’. So, group inclusion T, wn(R) ST (R) we

have completely installed it. Entered group 7, (R) we will call the generalized m-triangular

group of degree n > 2 over the ring R. As noted above, our main goal in this part of the work is to

define in terms of generators and relations of triangular groups 7/, (R) m =1,2,...,n . It is carried

out exactly the same for all specified values. m. Entered groups in 7’ (R) form a descending chain
I;(R)=T, (R)>T,,(R)>..>T, (R)=D,(R)

(where D?(R)=R’x...x R” — diagonal in T°(R)). A similar serial description was carried out

n pas

earlier in [6] for subgroups of the complete linear group GL, (A),n > 2, over the local ring A (with
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small restrictions on A), containing a group of diagonal matrices D, (A). In concept, our work is

also close to work [ 7], where the combinatorial structure of a triangular group of any (even infinite)
order was studied.
It is easy to see that if there is a 1 in R, the mapping

T,,(R)—>T (R), e+tx—>x
(e— unit order matrix n), defines an isomorphism of groups. Therefore, the groups introduced above
T, (R) are generalizations of the usual m-triangular groups (respectively) to the most general
cases of associative rings R. When solving the problem, we again use the transformation method
developed in [9] and [10].
Standart forms in 7, (R)

They are defined relative to some generating system of the named group. As such we take
the system

d.(¢),eeR’, 1<k<n; t,(1),1eR, j-izm. (2)
The fact that the group T, (R) is generated by the alphabet (g), follows directly from

Theorem 1 of this paper. Under the step forms i here we understand words of the form

/i = Htik(/lk) (where multiplication is quasi-multiplication and the order of the factors is

i+m<x<n

unimportant). As standard forms, all possible combinations of the alphabet (g) of the form are
declared herex =d (g,)o...od, (&,)o f,_,, ©-..° [, (s/)
(where m=n expression f,  o..o f, meaning is given 0).

Regarding the entered forms, it occurs

Theorem 1. Any matrix x from 7, (R), n>2, presented in standard form (sf), and such
a representation is unique.

Proof. Uniqueness. Just Si =t (L)oot (4,). Here
d,(&,)e..od (g,)o f,,, °-..o f, has a cell-diagonal appearance diag(0,x,), d,(g)o f, has the

same first row as x, i.e.. x,,,0,...,0,x,, .,,...,X,,. Equating the corresponding positions here gives

_ _ / . .
us & =X;,4,., ., =&Xx,+x,, T.e. & U fmatrice x are determined

= gl/xm+1 F X g seees A
unambiguously. Moving now from X to the matrix
d/(g)oxof =d,(g,)o..0d (¢,)of, , °..of,, we similarly conclude the uniqueness ¢, and
f,- The process described on (n-m)-m step leads us to the conclusion about the uniqueness ¢,_,
and f,_, . And then the equalities &, = x,, ,n —m < k < n, already take place in an obvious way.
As for the existence part of the theorem, it is a direct consequence of Theorem 3 of this
paper. Therefore, we can omit it here too. The case m=n can also be included in this theorem, if
we assume that there f,  o..o f, =0.
Constitutive relations
In the alphabet (g) we can write the following (directly verifiable) group relations 7, (R):
l.d,(¢§)od,(0)=d,(s°0);
2.d.(g)od, (0)=d,(0)od (g), i#k;
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3. t,;(AD) ety (a)=t,(A+a);

41, (Dot ()=t (Dot (), k=1, i # ],
5.6,(Doty ()=t (Aa)ot, (a)ot, (L)
6.t,(A)od, (&) =d,(&)ot, (A+& A);
7.t,(A)ed, ()=d,(g)ot, (A + Ae);
8.t,(A)eod, (&)=d, (&)ot,(A); r #i,k.

Our immediate goal is to show the completeness of the system of relations 1-8 for the

group 7,’, (R) in generating (g). For this purpose, we introduce (binary) relations on the set of all

words of the alphabet (g) —l>, 1<i<n—m,putin W—1>V if and only if the words W and V'

related by the relation W = X o), where X— some word that does not contain non-zero quasi-

transvections of the form 7, (), k <i. How to easily check entered relationships — are reflexive
and transitive.

Next, we will need the following

Theorem 2 (about the transformation of letters). Let fi— some form of step i and x— non-
zero letter of the alphabet (g), for which x =z, (4) condition is considered fulfilled p >i. Then

for them, using relations 3-8, you can perform the transformation V' = f; o x—g,, where g;— also

some form of stage i.

The proof is combinatorial and is carried out in two stages. Below we, to simplify the
entries under f;(#r) let's agree to understand the form f;, not containing a letter of the form
t, (%), *#0.

Stage I.x =d, (¢)

Here, using relations 6-8, we will have
V=Ffi(#n)elt, (A)eod (e)]=[f,(#n)eod,(e)]t, (4). Continuing this movement d, () and
further, we arrive at the required form like this

V= dk (&)o Liiim (*i+m) o..of, (*n) > Liiim (*i+m) o..ol, (*n) =4g;-
Stage II. x=1¢,,(1).
Here our consideration branches out as follows.
ayr=i. Applying relations 4 and 3, here we obtain the required form as follows

V= £ ) olt, (o1, (D=L, ot (x+ D]=g..
) r>i. In this case, wusing relations 4 and 5, we will have
V=fi@Er)elt, (et (D]=[fiEr)et,(Dlet,(@)ot, (¥) =1,(*)o fi(Fr)ot;(¥) o1, (¥) .
[fiFr)et;(9]et,(*).
The resulting word by applying the already analyzed point a) to the selected segment leads
us to the required form as V—l> f;(#r)ot, (*)=g,. Theorem 2 is proven.
3. Group View T, (R)
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We are now ready to formulate a basic statement about the representation of the named
group.
Theorem 3. Generalized m- triangular group 7, (R), n=2 (1<m<n), over the

associative ring R # {0} in generators (g) is represented by relations 1-8.

The proof consists of two parts.

I. Reduction to standard form.

In this part we will show the reducibility of any word W of the alphabet (g) to its standard
form S(W) using relations 1-8. Without loss of generality, a given word can be considered
represented in the form

W—fioX, (0)
Where fi— some form of stage 1 and X is its corresponding complement. Let further,
X =xo0 X, x— the first letter of the complement X. Applying transformation theorem 2 (i.e. using

1
relations 3-8), we reduce the given word to the form W =[f ocx]o X, >g o X,,. we get a

notation of the same form (0), but with a shortened complement X. Continuing this reduction

1
further (until all X is exhausted), we come to a notation of the form W — f, (where fi— another

1
form of step 1).Last according to definition — means that W =Y, o f,, where is the (already left)

complement Y1 does not contain quasi-transvection ¢, (*), * # 0. Now we do the same with Y1 and

extract the shape from it f>(ctynenu 2), we have W =Y, o f, o f,, where is the complement Y> does
not contain a quasi-transvection of the form z,, (*),* # 0, i < 2, etc. The described process of form

splitting off at the (n-m)th step leads us to the notation
W:Yn—m Ofn—m O"'ofz Oﬁ’

n—m

where is the word already Y,.. (a-priory —) does not contain transvection species
t,(¥),*#0, i<n—m, those. it consists entirely of diagonal letters of the alphabet (g). By
applying relations 1 and 2 to it, it is now reduced to the form d,(g,)o...od, (&,) in an obvious
way, i.e. the given word is reduced to its standard form S(W).

II.Completeness of relations 1-8.

Let now W=0 arbitrary group relation 7,’, (R) (in generators (g)). Having written the left-
hand side in its standard form (using relations 1-8), we replace it with S(#)=0. But according to
Theorem 1, the latter is possible only for zero letters of the form S(W). And this already means
that the given relation W=0 can be derived from 1-8. Theorem 3 is completely proven.

As we noted above, when m=n is f, , o..o f, =0, those. in this case, both the

transvections from (g) and the (related to us) relations 3-8 disappear from our field of
consideration. In other words (g) is replaced with a subalphabet d,(¢), s € R°, 1<i <n,

and the relations 1 - 8 with 1.2, and here Theorem 3 simply turns into Dikov’s definition of the
diagonal subgroup D.(R).

4.Assignment of the projective factor PT, (R).
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Based on (main) Theorem 3, in this section we give a combinatorial representation of the
group factor 7, (R)in the centre C = centT), (R). And to do this, we first need to calculate this

center, or rather, find some C-generating system of words W of the alphabet (g). Then the factor
under consideration will be presented as 7, (R) = <(g) |1-8&W = 0> (em.[11], cTp.77).

o

In the case where m=n, the group being studied 7,

1,m

(R) turns into a (classical) diagonal
group DY (R) . Setting its projective factor is not difficult and it is not interesting.
Cases m<ns T, (R) require additional research. Let x = (x;,) — an arbitrary matrix from

the center C. Taking also an arbitrary (diagonal) matrix d, (¢), € € R°, 1<k <n,we have
d (e)ocx=x0d ().
The latter will obviously lead us €0 x,, =x,, o &, those to switch on
X, €centR’. (e)

Let's consider in x its “corner” positions x;; (i.e., positions for which i<n—-m u j>i+m
). For these elements we also have the equalities 7, (1) o x =x0o7,(4)
(A—an arbitrary element from R). Comparison in last positions <i,i >, < j,j>, < j,i> will lead
us to Ax; =0=x,4 and

XA =Ax . (s)
Thus, in the central matrix, all its corner elements X, are required to enter the annulment

AnnR, and its diagonal elements (in addition to inclusions) must also satisfy the requirements of
“scalarity” (s). Now check that the matrix x, satisfying all the above conditions, will be central in

T’ (R), is no longer difficult. It also became obvious that the center C is generated by quasi-

transvections 7,(5), 6 € AnnR (i <n—m, j>i+m,and all “scalar” words d,(¢,)o...od,(¢,).
Summarizing these facts, we can formulate the following result.

Theorem 4. Projective generalized m-triangular group P7,’, (R), n>2 (1<m<n), over
the associative ring R # {o} in generators (g) is represented by relations 1-8, angular relations
t,(0)=0, 6 € AnnR (i<n-m, j>i+m), and with the following “scalar” relations
dl(gl)o"'odn(gn) = O

(&, ecentR’).
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