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Abstract. In this paper we consider one class controlled differential inclusion with a delay 

argument. For such models of dynamical systems, the minimax optimal control problem for 

ensemble of trajectories is researched. The existence problem and conditions of optimality is 

studied. The existence theorem for optimal control, and the necessary and sufficient conditions of 

optimality are obtained. 
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INTRODUCTION 

Differential inclusions are of great interest in the theory of optimal control [1,2,3]. They 

have important applications in the theory of differential equations with discontinuous right-hand 

sides, in differential games, in mathematical economics and in other fields. The theory of 

differential inclusions and their applications is developing in various directions. Research is 

underway on control and optimization problems for differential inclusions with delays, differential 

inclusions with a fuzzy right-hand side, and other classes of differential inclusions and their 

discrete analogues [4–8]. 

In the theory of optimal control, the study of control systems under conditions of 

uncertainty is important [9,10]. One of the approaches used when making decisions in conditions 

of incomplete information about the parameters of the system is the principle of minimizing the 

guaranteed value of the control quality criterion [11]. This principle leads to minimax (or maximin) 

control problems, which belong to the class of non-smooth optimization problems [10,12]. A wide 

class of such problems consists of non-smooth control problems for an ensemble of system 

trajectories. Various problems of controlling an ensemble of trajectories of a dynamic system are 

considered in [13–21]. 

In connection with the issues of controlling dynamic systems with delays under conditions 

of uncertainty, problems arise of controlling ensembles of differential inclusion trajectories with 

delays. Some properties of differential inclusions of this type were studied in [22,23]. In particular, 

conditions for the compactness and convexity of a set of absolutely continuous solutions have been 

identified, and controllability conditions for an ensemble of trajectories have been studied. For 

such systems, problems of optimal control of an ensemble of trajectories with non-smooth terminal 

functional are considered [24,25]. 

This paper considers the minimax problem of controlling an ensemble of trajectories for 

one class of model of a dynamic control system with delays. For this problem, existence questions 

and necessary and sufficient optimality conditions are studied. 
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      2. MATERIALS AND METHODS OF RESEARCH 

Let us consider a controlled differential inclusion with delays of the form 

,                              (1) 

where VuRx n  , , V is a convex compact set from mR , ),( utb is a convex compact 

set from nR . We will assume that the right-hand side of differential inclusion (1) satisfies the 

following conditions: 

1) the elements of the matrices and , , are summable on ; 

2) a multivalued mapping ),(),( utbut  is measurable in and continuous in ,Vu

and there is a function summable on T such that .),(),(),( VTuttutb    

Admissible controls for system (1) are measurable bounded m -vector functions 

,),( Tttuu  such that Vtu )( almost everywhere on T . We denote the set of all admissible 

controls by )(TU . 

Let be ,),( Tttuu  an admissible trajectory, )()( 00 TCn , ],[ 000 thtT  , where 

. An admissible trajectory is each continuous on 
 

and absolutely 

continuous on   a n-vector function satisfying differential inclusion (1) for 

,),( Tttuu  and initial condition 00 ),()( Ttttx  . Let us denote – the set of all 

admissible trajectories of system (1), corresponding to the control )(TUu and initial function 

)()( 00 TCn ; , – the corresponding 

ensemble of trajectories. 

Let the state of the ensemble of trajectories of system (1) be estimated by the terminal 

functional 
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In (2) we will assume that , is a maximum function of the form 
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is -matrix, . Functions of the form (3) are continuous and convex on 

. The problem of optimal control of an ensemble of trajectories of system (1) consists of 

minimizing a functional of the form (2), (3): 

.                                           (4) 
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problem as follows: 
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Minimax problem (5) belongs to the class of non-smooth optimal control problems. Minimax 

optimal control problems for differential inclusions are studied by methods of multivalued and non-

smooth analysis [2,10,12]. We will study questions of existence and optimality conditions in the 

minimax problem (5) . 

By virtue of the results of [22–24], the set is a convex compact set R n and the 

representation is valid 

 (6) 

where is the matrix function satisfying the equation? 

  

, 

        

 

Using (6), for the support function we obtain the formula: 

.         (7) 

Now, applying formula (7), we obtain the relation: 

 

. (8) 

3. RESEARCH RESULTS 

First, let us consider the question of the existence of optimal control in problem (5). 

Theorem 1. Let, in addition to the above conditions, the support function of the set 
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Proof. From the formula (8) it easily follows that the functional 
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      if the support function is strictly convex in Vu . And this 

property ensures the uniqueness of optimal control. The theorem has been proven. 

Now let us consider the question of necessary and sufficient conditions for optimality in 

the minimax problem (5). 

Let the control be piecewise continuous. We assume that the control 

is continuous on the left at each discontinuity point. Consider an arbitrary point and a 

sufficiently small number such that v is an arbitrary vector from V . With these 

parameters, consider the admissible control 

 ( 9) 

Using formula (7 ), we have : 

 

.                  (10) 

Consider the function 

                                         

(11) 

Using relation (10), it is easy to verify that for all function (11) is continuous at 

point . In addition, taking into account formula (10), we have 

 

 ( 12) 

where at . Let's put: 

, 

. 

Using the continuity of function (11) at the point and formula (12), we obtain the 

following statement. 

Lemma 1. There is a number such that for , i.e. 

equality is true: 

.  ( 13) 

Theorem 2. Let , piecewise continuous optimal control in problem (4). Then 

for everyone  the equality is true:  

 

             ( 14) 

Proof. For definiteness, we will assume that the optimal control  is continuous on the 

left at each point of discontinuity of the function, and continuous on the right at the point 

)(sup)(
),,( 01




quJ
utX

 )),,(( utbC

)()(* TUu  )(* tu

),[ 10 tt

0 ,T 










),,(          ,

),,(   ),(*
),(






tv

ttu
vtu

  )),,,(()),,,(( 0101  utXCutXC










 dttutbttFCvtbttFC )]))),(,(),(())),,(),(([ 11

nR










 .0),),,,((

,0),),,,((
)(

01

01








ii

ii

i
zPutXC

zPutXC
f

ki ,1

0

  )),,,(()),,,(( 0101 iiii zPutXCzPutXC 

),()])),(,(),(()),,(),(([ 11  ozPubtFCzPvbtFC iiii  

0
)(




o
0

)}),,,((max)),,,((:{ 01
,1

01 ii
ki

ii zPutXCzPutXCiI 


 

)}),,,((max)),,,((:{ 01
,1

01* ii
ki

ii zPutXCzPutXCiI  



 

0

0),(00  v  II ),0( 0 

)),,,((max)),,,((max 0101
,1

ii
Ii

ii
ki

zPutXCzPutXC 


  ),0( 0 

)(* tu Tt

Tt

0)]),(*,(),(()),,(),(([maxmin 11
*




iiii
IiVv

zPtutbttFCzPvtbttFC

)(* tu

],( 10 tt



 

SCIENCE AND INNOVATION 
INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 2 ISSUE 10 OCTOBER 2023 

UIF-2022: 8.2 | ISSN: 2181-3337 | SCIENTISTS.UZ 

 210  

 

      . Let Consider an arbitrary admissible control of the form (9). 

Since the control is optimal, it is a solution to problem (5), i.e. taking into account 

formula (8) we have: 

. 

Means, 

. 

Hence, by virtue of (13) we have 

. 

Therefore, taking into account (12), we obtain 

. 

Passing here to the limit at , we obtain 

.  ( 15) 

So, equality (14) is valid for any . Passing to the redistribution in (15) at 

 
and taking into account the continuity of control on the right at the point , we 

note that relation (14) is also valid at the point . The theorem has been proven. 

Theorem 3. Let there be an admissible control and a number such that 

equality (14) holds for almost all of them. Then is the optimal control in problem (4). 

Proof. Let be an arbitrary admissible control. Then, by virtue of (8) and (14), we have 
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According to (8), the last relation will take the form. 
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, , , . 

According to these data, we obtain the following minimax problem: 
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For the system under consideration we have : 
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4. DISCUSSION OF RESULTS 

Some useful remarks can be made regarding the results obtained. 
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      and condition (17) is satisfied, then the equality is true , where 

. 

So, according to Theorem 3, in order to find the optimal control, it will be enough to 

determine such that , and after finding the control  from 

condition (17), check for this number that  condition (18) is met. If this is the case, then the 

constructed control , will be the optimal control in problem (5). 

CONCLUSION 

The paper considers one minimax-type control problem for differential switching with 

delays. The problem under study is a problem of optimal control of an ensemble of trajectories of 

a dynamic system. The existence of a solution to the minimax problem and optimality conditions 

are studied. Sufficient conditions for the existence of optimal control are given. Theorems on 

necessary and sufficient conditions for optimality are proven. The results obtained show that they 

allow the development of an algorithm for constructing optimal control in the considered minimax 

problem. 
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