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Abstract. In this article, the state of stability in parametric excitation according to the
quasi-rectangular sine law of motion expressed by Hill’s equation is studied. The stability of
changing systems and their solutions over a certain period of time was analyzed.
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INTRODUCTION

It is known that human life consists of movement and various processes. Where there is
movement, work is done, energy is spent, and energy is generated. This, in turn, creates a process
that satisfies human needs. It is important that the movement of anything or system is continuous
and stable. This issue is one of the pressing issues in our developing society. As the human mind
develops, the processes activated by it become more complex. These systems of actions and
processes are represented in science by various functional-differential equations and systems of
equations. We can check the stability of such complex systems using these equations. Several
equations have been proposed by scientists to study the stability of the movement of complex
systems in life. When studying the stability of motion, it is important to express it with an equation.
Hill's equations are very effective for this. In the following article, the stability of the movement
represented by Hill's equation in the parametric excitation according to the quasi-rectangular sine
law is studied.

LITERATURE REWIEW

The equations and concepts used in this article are studied in one chapter of /I.P.Mepkun's
book named "Introduction to the theory of stability of motion". The author showed that when
studying the stability of non-autonomous systems, that is, parametric driven systems, it is enough
to study the stability of the solutions of Hill's equations [1]. In A.X. I'enur's book named "Absolute
stability of linear systems with non-unique equilibrium states in critical states" the conditions of
absolute stability imposed on the fundamental solutions of the equations of motion were
considered [2].

RESEARCH METHODOLOGY AND DISCUSSION

Consider a simple system, the following excited motion equation described by Hill's
equation

X+[0+ep®)]x=0 €))

P (t) changes with the excitation function according to the quasi-rectangular sine law (Fig. 1). The
period T of the excitation function is equal to the sum of time T; when the function ¥(t) equals +1
and time T, when Y(t) = —1. At T; = T,, we get a typical quasi-rectangular sine.[1]
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Figure 1
In particular, with the help of equation (1), the systems whose stiffness changes from time
to time are studied using the relay device. For us, this problem means not only that its solution can
be used to analyze the stability of the behavior of certain systems, but also that it is necessary to
construct a fundamental matrix X (T') of solutions satisfying the condition X (0) = E for one period
[0, T],

a,—p ap a,
a a,, — a
det(Ad - pE) = 21 2n =P U
anl anZ ann - p

shows the construction of the matrix A = X(T) of the characteristic equation and the determination
of stability conditions for the solutions x = 0,x = 0.[2]

In the equation (1), the number ¢ is equal to the pulsation depth, and the number § is equal
to the square of the frequency k of natural vibrations at § > 0 and € = 0, i.e. § = k?. We match
the beginning of time t with the beginning of any period T. Then, for the first part of the period
0 <t < Ty, equation (1) looks like this:

i+ (k*+e)x=0 0<t<T), (2)
and for the second part of the period 0 <t < T,
i+ (k?—e)x=0 (T, <t<T). (3)

Let's look at the first equation (2). Assuming that x; = x, x, = x as before, we reduce
equation (2) to a system of two first-order equations
X, =%y, X, = —kix; (0<t<T), 4)
here
k? = k? + e. (5)
(4) system is simply solved. Two linearly uncoupled solutions of this system satisfying the
condition X(0) = E are as follows:

X117 = coSkqt, Xy, = kisinklt, Xy, = —kysink,t, x,, = cosk;t (6)
1
Thus, the fundamental matrix of the solution in the first part of the period is as follows

1,
cosk,t —sink,t
kq

X(T) = 0<t<T). (7)

—kysink,t  coskqt

It can be seen that X(0) = E.
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Let's go to the second part of the period (T, < t < T). Equation (3) after replacing k% =
k? — ¢ in system (4) with k% = k? + ¢ has the following form:[3]
Xy =X, %y = —kix; (T <t<T). @)

RESULTS
This is in the general solution of the system
x; = Cicosk,(t —Ty) + C,sink,(t — T,),
X, = —k,Cysink,(t — Ty) + k,Cycosk,(t — Ty) 9)
to determine the first eigenvalues, we choose integral constants C; and C,. For this, the solution of
(9) must coincide with the solutions of x;4, X1 in system (6) at t = T;. We have
cosk,T, = C;, —kysink;T, =k,C,.

We put the values of C; and C, in these equations into (9) and find the first specific solution of
equation (8) in the second part of the period Ty <t < T:

k
Xy, = cosk T cosk,(t —T;) — k—lsinlelsinkz (t—Ty),
2
le = —k2COSk1T15iTLk2 (t - Tl) - klsinle]_COSkz(t - Tl)'

1 1
X5 = k—sinlelcoskz(t —-T))+ k—coslelsinkz (t—Ty),
1 2
Xop = —:—isinlelsinkz(t —T,) + cosk,T,cosk,(t — Ty). (10)

These expressions determine the elements of the fundamental matrix X(T') in the second
part of the period Ty <t <T. If we put t =T in (10), we get matrix elements A = X(T).
Considering ay; = x;j(T), we construct the characteristic equation det(A — pE):
x11(T) — p x12(T)
x21(T) x22(T) — p
We put the value of x;(T) in (10) into this equation and, taking into account kf = k* + ¢, k5 =

=0.

k? — e, T — T, = T,, directly -by correct calculations we find the following:

p>+ap+1=0, (11)
here
a=2 [\/%uz sink,T;sink,T, — coslelcosszz], (12)
p=¢e/k*=¢/é. (13)

In this example, all the coefficients of the characteristic equation were obtained by direct
calculations. It follows from the general theory of the Hill equation that the free term of equation
(11) 1s equal to one.[1] In order for the motion to be stable, it is necessary and sufficient that the
inequality |a| < 2 is satisfied. In our example, the stability condition (simple but not asymptotic)
is as follows:

sinkTySink,T,
Ji-u?

If all numbers &, €, Ty and T, are given, it is not difficult to check this condition. Without
stopping at the detailed analysis of the inequality (14), we establish the conditions for the
emergence of parametric resonance only at u = £/8§ < 1. (14) without taking into account all the

— cosk,T,cosk,T,| < 1. (14)

participating quantities u higher than one and taking into account that the parametric resonance
for the Hill equation already occurs in the stability region, we will have
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|cos(k, Ty + k,T,)| = 1.
From here
kT, + k,T, =mn (n=123,..). (15)
And now we consider the values of k; and k,

ey =VkZ+e=kfT+p ky=vk?—e=k/T- L
For sufficiently small u = £/k? = £/8, we have the following:
ki =k(1+1/50), ko =k(1-1/5u).
We substitute these values for k; and k, in (15) and find the following (T, + T; = T):
kT + 1/2 uk(T, — T,) = mn,
or to the accuracy of the main limits

w=2- (n=123..) (16)

where w = 21 /T is the frequency of pulsation, k = v/§ is the frequency of specific oscillations
of the system in the absence of parametric excitations.[4]

CONCLUSION

It can be seen from the expression (16) that at a sufficiently small pulsation depth, the
parametric resonance € occurs at countless values of its frequency w. (16) expression does not
depend on T; and T, parts of the period in parametric excitation according to the quasi-rectangular
sine law for critical values of the pulsation frequency, and it is critical in parametric excitation
according to the simple sine (cosine) law overlaps the corresponding values of the frequency.
Indeed, if the Mathieu equation is written in the following form

%+ (k? + ecoswt)x = 0,

where k is the frequency of natural oscillations of the system without parametric excitations, in
this case, using the formula wt = 7, passing to dimensionless time, we get the canonical form of
this equation, where § = k?/w? . ¢ is defined by the equations § = n?/4 or k? /w? = n?/4 with
a small critical point, where n = 1,2,3, .... w = 2k/n, i.e. formula (16).

To conclude this example, we should note that the stability condition (14) holds when one
or all of the numbers 8,8 + £ = k? and § — € = k3 are negative. For this, it is enough to go from
trigonometric functions of abstract arguments to hyperbolic functions of real quantities.
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