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Abstract. The development of science and new technologies poses more subtle, specific, 

and detailed requirements for solving technical and technological problems in various fields, such 

as mechanical engineering, instrument making, electrical engineering, etc. Scientific and 

technological progress constantly demands the formulation and solution to new, increasingly 

complex model problems. The process of deformation of a paraboloid of revolution under the 

influence of variable electromagnetic forces and mechanical loads is mathematically modeled in 

the article. Numerical results were obtained and electromagnetic effects were analyzed. 
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I. Introduction. The dynamics of electrically conductive media in electric and magnetic 

fields is currently an extensive and well-developed science, formed in the intersection of 

mechanics and electrodynamics. Initially, the main direction developed was related to the study of 

the motion of electrically conductive solids in electric and magnetic fields. The solution to such 

problems was stimulated, first, by the needs in electrical engineering and electromechanics. 

The needs of technology have led to problems that consider the motion of complex 

mechanical systems with electrically conductive and magnetized areas in electric and magnetic 

fields. In particular, problems of metallurgy, nuclear energy, and astronautics required 

consideration of problems in the motion of a conducting rigid body with cavities containing a 

conducting liquid in a magnetic field. 

An important place in the mechanics of conjugate fields is occupied by the study of the 

motion of a continuous medium, taking into account electromagnetic effects. When constructing 

such models of the mechanics of a deformable rigid body, the influence of the electromagnetic 

field on the thermomechanical behavior of the body is realized through ponderomotive forces and 

their moments, as well as through sources of additional energy that arise when the body interacts 

with an external electromagnetic field. In this case, Maxwell's macroscopic equations of 

electrodynamics are formulated, describing the field in the external medium and in the body, taking 

into account field characteristics such as conduction currents, polarization, and magnetization. 

Today, there are several approaches to obtaining macroscopic equations of 

electrodynamics of bodies capable of polarization and magnetization and determining the 

characteristics of the electromagnetic field in the body and the energy in it. 

The most common approaches in the literature sources are the statistical model, the Lorentz 

model, the two-dipole model, and the Maxwell-Minkowski model.   

Macroscopic fields and Maxwell’s equations in the statistical model are determined by 

statistical averaging of electromagnetic fields and electrodynamic equations at the micro level, 

caused by the movement of point charge carriers (electrons, nuclei) within stable structures (atoms, 
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      molecules, ions); the relations for polarization and magnetization at the macro level are obtained 

as statistical averages of the magnetic and dipole moments in the body. 

The motion of an elastic conductive medium in a magnetic field is described by a coupled 

system of equations of electrodynamics of a slowly moving medium and equations of the dynamic 

theory of elasticity considering ponderomotive forces [1,2,3]. 

II. Formulation of the problem. Models of magnetic elasticity. We will consider a 

truncated current-carrying paraboloid of revolution under the influence of non-stationary 

electromagnetic and mechanical fields. Ignoring the influence of polarization and magnetization 

processes, we assume that an alternating electric current is supplied to the end of the shell from an 

external source. It is assumed that the external electric current in an unperturbed state is uniformly 

distributed over the body (the current density does not depend on the coordinates).  

We also assume that the electromagnetic hypotheses are satisfied regarding the electric 

field strength E


 and magnetic field strength H


 [1]. These assumptions are some electrodynamic 

analogs of the hypothesis of non-deformable normals and, together with the latter, constitute the 

hypotheses of magnetoelasticity of thin bodies. Accepting these hypotheses allows us to reduce 

the problem of the deformation of a three-dimensional body to the problem of the deformation of 

an arbitrarily chosen coordinate surface. 

Let us consider shells of variable thickness in the meridional direction, the middle surface 

of which is closed in the circumferential direction. We assume that the shell is under the influence 

of axisymmetric non-stationary mechanical and magnetic loads. We ignore the processes of 

polarization and magnetization.  

The middle surface of the shell in an unstrained state refers to a curvilinear orthogonal 

coordinate frame 𝛼 = 𝑠, 𝛽 = 𝜃, where 𝑠 − is the length of the generatrix arc (meridian), measured 

from a certain fixed point, θ is the central angle in a parallel circle. 

Coordinate lines 𝑠 = 𝑐𝑜𝑛𝑠𝑡 and 𝜃 = 𝑐𝑜𝑛𝑠𝑡 are the lines of the principal curvatures of the 

middle surface of the shell.  

Counting coordinate 𝛾 along the normal to this surface, we relate the entire shell to the 

orthogonal spatial coordinate frame 𝑠, 𝜃, 𝛾. 

Using the equations of magnetoelasticity of shells of revolution [2], after appropriate 

transformations, we obtain a resolving system of equations of one-dimensional current-carrying 

shells of revolution of variable rigidity in a magnetic field in the 𝑠 coordinate.  
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Here the sought-for functions are 𝑢, 𝑤, 𝜗𝑠, 𝑁𝑠, 𝑄𝑠, 𝑀𝑠, 𝐸𝜃 , 𝐵𝛾. The resulting system of 

eighth-order nonlinear differential equations describes mathematical models of magnetoelasticity 

of a truncated flexible paraboloid of revolution located in a non-stationary magnetic field.  

III. Methods for solving the magnetoelasticity problem. The methods for solving the 

nonlinear problem of magnetoelasticity of a current-carrying paraboloid of revolution is based on 

the sequential use of the Newmark scheme, the quasi-linearization method, and the discrete 

orthogonalization method [2,3,4,5].  

When studying the stressed state of flexible current-carrying shells of revolution of 

arbitrary cross-section, and conjugate shells of various shapes under the influence of a non-

stationary magnetic field, we select the following functions as the sought-for ones:  

𝑢𝑥, 𝑢𝑧 , 𝜗𝑠, 𝑁𝑥 , 𝑁𝑧 , 𝑀𝑠, 𝐸𝜃 , 𝐵𝛾,                                                       (3.2) 

where 𝑢𝑥, 𝑢𝑧 − are radial and axial displacements, 𝜗𝑠 − is the normal revolution angle, 

𝑁𝑥, 𝑁𝑧 − are radial and axial forces, 𝑀𝑠 − is the bending moment, 𝐸𝜃 − is the electric field 

strength, 𝐵𝛾 − is the magnetic field induction.   

These quantities are related to displacements 𝑢, 𝑤 and forces 𝑁𝑠, 𝑄𝑠 as: 

𝑁𝑥 = 𝑁𝑠 cos 𝜑 + 𝑄𝑠 sin 𝜑,    𝑢𝑥 = 𝑢 cos 𝜑 + 𝑤 sin 𝜑, 

𝑁𝑧 = 𝑁𝑠 sin 𝜑 − 𝑄𝑠 cos 𝜑 , 𝑢𝑧 = 𝑢 sin 𝜑 − 𝑤 cos 𝜑.                             (3.3) 

The use of these functions makes it possible to construct an algorithm for solving problems 

for shells of revolution of an arbitrary cross-section when the conditions for the simplest 

conjugation of shells of revolution are met. In this case, the elasticity relations [2] are written as: 
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Considering ((3.3), (3.4)), we obtain a resolving system of nonlinear differential equations 

for the magnetoelasticity of shells of revolution of an arbitrary cross-section: 

𝜕𝑢𝑥

𝜕𝑠
=

1 − 𝜈2

𝐸ℎ
(cos 𝜑 𝑁𝑥 + sin 𝜑 𝑁𝑧) cos 𝜑 +

𝜈 cos 𝜑

𝑟
𝑢𝑥 +

1

𝑅𝑠
𝑢𝑧 − sin 𝜑 𝜗𝑠 −

cos 𝜑

2
𝜗𝑠

2 

𝜕𝑢𝑧

𝜕𝑠
=

1 − 𝜈2

𝐸ℎ
(cos 𝜑 𝑁𝑥 + sin 𝜑 𝑁𝑧) sin 𝜑 +

𝜈 sin 𝜑

𝑟
𝑢𝑥 −

1

𝑅𝑠
𝑢𝑥 + cos 𝜑 𝜗𝑠 −

sin 𝜑

2
𝜗𝑠

2 



 

SCIENCE AND INNOVATION 
INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 2 ISSUE 10 OCTOBER 2023 

UIF-2022: 8.2 | ISSN: 2181-3337 | SCIENTISTS.UZ 

 111  

 

      𝜕𝜗𝑠

𝜕𝑠
=

12(1 − 𝜈2)

𝐸ℎ3
𝑀𝑠 −

𝜈 cos 𝜑

𝑟
𝜗𝑠 ,                                                

𝜕𝑁𝑥

𝜕𝑠
=

cos 𝜑

𝑟
(𝜈 − 1)𝑁𝑥 + (

1

𝑅𝑠
+

𝜈 sin 𝜑

𝑟
) 𝑁𝑧 +

𝐸ℎ

𝑟2
𝑢𝑥 − (𝑃𝑟 + 𝜌𝐹𝑟

^) + 

+𝜌ℎ (
𝜕2𝑢𝑥

𝜕𝑡2
cos 𝜑 +

𝜕2𝑢𝑧

𝜕𝑡2
sin 𝜑) , 

𝜕𝑁𝑧

𝜕𝑠
= −

cos 𝜑

𝑟
𝑁𝑧 −

1

𝑅𝑠
𝑁𝑥 − (𝑃𝑧 + 𝜌𝐹𝑧

^) + 𝜌ℎ (
𝜕2𝑢𝑥

𝜕𝑡2
sin 𝜑 −

𝜕2𝑢𝑧

𝜕𝑡2
cos 𝜑) , 

𝜕𝑀𝑠

𝜕𝑠
=

cos 𝜑

𝑟
(𝜈 − 1)𝑀𝑠 +

𝐸ℎ3

12

cos2 𝜑

𝑟2
𝜗𝑠 + cos 𝜑 𝑁𝑥 − sin 𝜑 𝑁𝑧 + 

+(cos 𝜑 𝑁𝑥 + sin 𝜑 𝑁𝑧)𝜗𝑠 −
𝜈 sin 𝜑

𝑟
𝑀𝑠𝜗𝑠 −

𝐸ℎ3

12

cos 𝜑 sin 𝜑

𝑟
𝜗𝑠

2 ,               (3.5) 

𝜕𝐸𝜃

𝜕𝑠
= −

𝜕𝐵𝛾

𝜕𝑡
−

cos 𝜑

𝑟
𝐸𝜃 , 

𝜕𝐵𝛾

𝜕𝑠
= −𝜎𝜇 [𝐸𝜃 + 0,5 (

𝜕𝑢𝑥

𝜕𝑡
sin 𝜑 −

𝜕𝑢𝑧

𝜕𝑡
cos 𝜑) (𝐵𝑠

+ + 𝐵𝑠
−) − 𝜇𝐽𝜃ст − 

− (
𝜕𝑢𝑥

𝜕𝑡
cos 𝜑 +

𝜕𝑢𝑧

𝜕𝑡
sin 𝜑) 𝐵𝛾] +

𝐵𝑠
+ − 𝐵𝑠

−

ℎ
 , 

where 

𝑃𝑟 = 𝑃𝑠 cos 𝜑 + 𝑃𝛾 sin 𝜑 ,   𝑃𝑧 = 𝑃𝑠 sin 𝜑 − 𝑃𝛾 cos 𝜑 , 

𝐹𝑟
^ = 𝐹𝑠

^ cos 𝜑 + 𝐹𝛾
^ sin 𝜑,   𝐹𝑧

^ = 𝐹𝑠
^ sin 𝜑 − 𝐹𝛾

^ cos 𝜑. 

The Lorentz force components 𝐹𝑠
^, 𝐹𝛾

^ take the following form: 

𝜌𝐹𝑟
^ = ℎ𝐽𝜃ст𝐵𝛾 + 𝜎ℎ [𝐸𝜃𝐵𝛾 + 0,5 (

𝜕𝑢𝑥

𝜕𝑡
sin 𝜑 −

𝜕𝑢𝑧

𝜕𝑡
cos 𝜑) (𝐵𝑠

+ + 𝐵𝑠
−)𝐵𝛾 − 

− (
𝜕𝑢𝑥

𝜕𝑡
cos 𝜑 +

𝜕𝑢𝑧

𝜕𝑡
sin 𝜑) 𝐵𝛾

2] 

𝜌𝐹𝑧 = −0,5ℎ𝐽𝜃ст(𝐵𝑠
+ + 𝐵𝑠

−) − 𝜎ℎ{0,5𝐸𝜃(𝐵𝑠
+ + 𝐵𝑠

−) + (
𝜕𝑢𝑥

𝜕𝑡
sin 𝜑 −

𝜕𝑢𝑧

𝜕𝑡
cos 𝜑)

× [0,25(𝐵𝑠
+ + +𝐵𝑠

−)2 +
1

12
(𝐵𝑠

+ − 𝐵𝑠
−)2] − 

−0,5 (
𝜕𝑢𝑥

𝜕𝑡
cos 𝜑 +

𝜕𝑢𝑧

𝜕𝑡
sin 𝜑) 𝐵𝛾(𝐵𝑠

+ + 𝐵𝑠
−)}.                                                       (3.6) 

Here 𝐵𝑠
± refers to the value of magnetic induction on the surfaces of the shell: 

𝐵𝑠 (𝑠, ±
ℎ

2
, 𝑡) = 𝐵𝑠

±(𝑠, 𝑡).                                                         (3.7) 

Thus, the system of eighth-order nonlinear differential equations (3.5) describes the stress-

strain state of a flexible current-carrying paraboloid of revolution of an arbitrary cross-section 

located in a non-stationary magnetic field. 

The notations generally accepted in the theory of shells and the theory of 

electromagnetoelasticity are used in relations. 

Let us study the behavior of a conductive shell of variable thickness in a magnetic field. 

Figure 1 shows the distribution of maximum values of shell stress. 
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Fig.1. Stress distribution. 

 

The presented results make it possible to evaluate the influence of external electric current 

and magnetic induction on the shell and their combined effect. 

IV. Conclusion. The study presents an analysis of the stressed state of a truncated flexible 

paraboloid of revolution under the influence of a time-varying mechanical force and a time-

varying external electric current. The results obtained show the influence of anisotropy of 

conductive properties, external electric current and external magnetic field on the stressed state of 

a paraboloid of revolution; the consideration of geometric nonlinearity allows us to significantly 

clarify the pattern of strain. Note that the proposed approach allows solving new problems of 

magnetoelasticity of flexible current-carrying shells of revolution, which is illustrated by the 

example of a paraboloid of revolution. 
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