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Abstract.  To overcome the environmental impacts of a manufacturing factory over its life 

cycle, the role of sustainable energy effectiveness is vital. For this reason, implementing energy 

conservation technologies to empower energy efficiency has become an essential business for most 

manufacturing plants. Data-driven control setups are a novel idea to handle the energy efficiency 

of such complex systems, while machine learning is becoming well-known in the system 

engineering community. In this paper, a new approach together with optimal control application 

is considered to open promising energy-saving ideas through investigating machines of a factory 

using machine learning, specifically, Gaussian Processes (GP), where the model is built by 

correlating the dynamics, complexity, and interrelated energy consumption recordings. We 

connect the idea with controlling a manufacturing system energy in an optimized way, where the 

Model Predictive Control loop delivers optimal solutions for each control time step. In the end, a 

numerical example is demonstrated to give a clear picture of the proposed modelling method's 

potential. 

Keywords: gaussian processes, machine learning, model predictive control, stochastic 

model, sustainable manufacturing. 

 

I. INTRODUCTION  

Improvements in distributing total energy economically optimal are among the major 

prerequisites to fulfil the demand of industrial process facilities due to high and fluctuating prices in 

local and global energy markets. Even though many innovative approaches have been discovered 

and implemented consistently, the energy management requirements have not been fully utilized. 

Thus, manufacturing facility managers' society still lacks novel ideas to overcome concerns about 

energy efficiency [1]. Moreover, the role and contribution of continuous reductions in energy 

consumption over a manufacturing factory's life cycle to cut off GHG emission impact are crucial in 

jumping towards an eco-friendly environment. For these reasons, identifying energy-related 

problems have become a hot area of interest in recent years. Herrmann et al. [2]-[3] proposed his 

state of the art for optimized process chains and locations of technical building services. Devoldere 

et al. [4]-[5] researched energy-related impact and cost reduction proposals for machine design in 

the production line. The combinations of power metering with sensors to monitor energy 

management systems was another considerable work by authors of [6]-[9]. On the other hand, 

Abdufattokhov et al. [10] tested the performance of the data-driven control idea and showed the 

proposed technique has a promising future. Our contribution in this work is to solve the 

aforementioned problem through discussions on how artificial intelligence technics can be applied 

to data collected from machines in order to achieve energy-efficient manufacturing management 

using Model Predictive Control (MPC). MPC has been applied to real systems and shown to be an 

efficient supervisory control solution providing 17 % energy savings with better thermal comfort 
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      over rule-based control [11] with the ability to estimate a plant's future response using a statistical 

model. 

  

The reminder of the paper content is organized as follows: In section II, primary energy 

consumers and producers in a manufacturing process is explained, followed by an approach on how 

data can be collected. Next, two sections III and IV are devoted to the methodology of the proposed 

approach. Finally, we end up with a demonstrative example and conclude sections V and VI, 

respectively. 

II. DATA ACQUISITION FROM MANUFACTURING PROCESS 

Total energy delivered to a manufacturing factory is wasted for production and auxiliary 

services. While the former can include machine tools, conveyors, robots, heaters, fridges, etc., the 

latter includes chillers, air compressors, boilers, lighting and etc. As shown in Figure 1, the chillers' 

workload is to negotiate with the heat produced by machines of the production system, taking into 

account constraint qualifications. In addition, there exist three primary energy emissive sources: 

heat transferred from ambient environment Qconduction, by radiation from sunshine Qradiation, and the 

last one, heat coming from doors or windows openings, Qinfiltration. 

 

 
 

Fig. 1 Energy distribution among main consumers in a factory. 

 

From Figure 1, it is evident that the relationships are complex, non-linear, and dynamic. 

Although it may seem possible to model theoretically their dynamic correlations based on physical 

engineering theories with acceptable accuracy for a realistic understanding of their behaviours, in 

reality, controlling their performance for energy efficiency remains extremely difficult. One 

possible way to achieve the objectives without relying on theoretical models is to collect energy 

consumption and operation data and develop a model of the system using the data only. Since our 

focus is improving energy efficiency, the power consumption p is an objective parameter, and it 

is defined by several output measurements y, which can be formulated as a function of control 

inputs u. We can collect time-series data matrix Ma as follows 

          𝑀𝑎 = |𝑝𝑎  𝑦𝑎  𝑢𝑎| =  {

𝑝𝑎 = |𝑝𝑖
𝑎|  

𝑦𝑎 = |𝑦𝑖𝑗
𝑎 |  

𝑢𝑎 = |𝑢𝑖𝑘
𝑎 |  

                    (1)  

 

where i=1,2,3…n; j=1,2,3…m; k=1,2,3…q. 

a - machine type superscript;  

i - time interval, j - th output and k - th input parameter subscripts, respectively; 

n - is the total number of data gathered; 

m - is the total number of output parameters;  
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      q - is the total number of input parameters.   

 

For example, uik
a  stands for the value of input parameter k of machine a at time interval i. 

Similarly, time-series matrix for energy consumption and operation data of other systems can be 

obtained through either SCADA(supervisory control and data acquisation) software system or 

directly from relevant digital sensors. 

III. PREDICTIVE MODELLING USING GAUSSIAN PROCESSES 

In most deterministic machine learning algorithms, difficulties in the training process stem 

from a lack of inefficient data. When the model is chosen, examining directions anticipated from 

this model leave the training data. Although the forecasts of the capacity approximator are 

discretionary, they are guaranteed with "full certainty" [12]. To conquer the issue, building up a 

model dependent on an appropriate intelligent algorithm that fabricates the framework's model 

utilizing a stochastic capacity approximator that puts a back dispersion over the mapping capacity 

and communicates the degree of vulnerability about the model [11] another option and practical 

arrangement. Thus, we initially require a probabilistic model to communicate model vulnerability 

for gaining without any preparation. See Figure 2 for visualizing what is aimed to construct in the 

paper. Hence, for learning from scratch, we initially need a probabilistic model to express model 

uncertainty. For this purpose, we can use a non-parametric probabilistic Gaussian Processes 

Regression(GPR) to prepare a model. 

 
Fig. 2 '+' - training samples. Deterministic function approximators (left) and Probabilistic 

function approximator (right). 

Gaussian Processes Regression 

A Gaussian processes is a batch of random variables, which form Gaussian distribution 

jointly. We can include the Gaussian Processes(GP) models into a class of a nonparametric method 

of nonlinear system identification where new predictions of system behaviour are computed 

through the use of Bayesian inference techniques applied to empirical data [11]. GP models can 

be considered as a new approache such as Support Vector Machines [13]-[14]. In addition, GPs 

make possibile to include various kinds of prior knowledge into the model [15] for the 

incorporation of local models and the static characteristic.    

A GPs is completely specified by its mean function and covariance  function. It is very 

common to define mean function 𝑚𝑓(𝑥) and the covariance function 𝐶𝑓(𝑥𝑖, 𝑥𝑗) of a dynamic 

process f(x) under consideration as 

 

    𝑚𝑓(𝑥𝑖) = 𝐸[𝑓(𝑥𝑖)]                                (2) 

𝐶𝑓(𝑥𝑖, 𝑥𝑗) = 𝐸 [(𝑓(𝑥𝑖) − 𝑚𝑓(𝑥𝑖)) (𝑓(𝑥𝑗) − 𝑚𝑓(𝑥𝑗))]   (3) 

 

In order to develop a prognostic model using predefined data in Section II, we use GPs, 

please refer to [1] for more brief details.  

Consider the system 
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      𝑦 = 𝑓(𝑥) +  𝜖                                           (4) 

 

with the white Gaussian noise ϵ ̴ N(0, 𝜎𝑛
2), with the variance 𝜎𝑛

2 and the vector of regressors x from 

the input dimension space 𝑅𝐷. We have [𝑦1… 𝑦𝑛]T  ̴  N(0,K) with 

 

𝐾 = 𝐾𝑓 + 𝜎𝑛
2𝐼                                         (5) 

 

where 𝐾𝑓 is the covariance matrix for the noise-free f of the system that is evaluated from 

the covariance function 𝐶𝑓(𝑥𝑖, 𝑥𝑗) applied to all the pairs i and j of measured data. 𝐼 is the n x n 

identity matrix. More information on a wide range of mean and covariance functions together with 

its use in GP models can be found in [16]. Here, we consider the composite covariance function 

made out of the squared exponential covariance function and the constant covariance function 

because of uncertainties caused by environment: 

 

𝐶(𝑥𝑖, 𝑥𝑗) =  𝜎𝑓
2exp [−

1

2
 ∑ 𝜃𝑑(𝑥𝑖

𝑑 − 𝑥𝑖
𝑑)

𝐷

𝑑=1
] + 𝜎𝑛

2ꝺ𝑖𝑗      (6) 

 

Prediction with Gaussian Processes Regression 

In order to predict a new output estimate 𝑦∗ of the GP model for a given 𝑥∗, we use 

Bayesian framework [19]. The following step is to find how a new input is inserted to the 

covariance matrix 𝐾𝑛+1. For the batch of random variables [𝑦1… 𝑦𝑛,𝑦∗] we define: 

 

          𝑌𝑛+1  ̴   N(0, 𝐾𝑛+1)                               (7) 

 

with the covariance matrix 

 

𝐾𝑛+1 = (
𝐾 𝐾∗
𝐾∗
𝑇 𝐾∗∗

)                         (8) 

 

where  

    𝐾∗ = [𝐶(𝑥1, 𝑥
∗), . . . , 𝐶(𝑥𝑛, 𝑥

∗)] is the nx1 vector of covariances between the training and 

the test input data,  

    𝐾∗∗ = 𝐶(𝑥
∗, 𝑥∗) is the autocovariance submatrix of the test input data. 

 

Finally, we end up with the Gaussian prediction with the following mean and variance: 

 

  𝐸[𝑦∗] =  𝜇(𝑥∗) =  𝑚𝑓(𝑥
∗) + 𝐾∗

𝑇𝐾−1 (𝑌 − 𝑚𝑓(𝑋))      (9) 

𝑣𝑎𝑟[𝑦∗] =  𝜎2(𝑥∗) =   𝐾∗∗ − 𝐾∗
𝑇𝐾−1𝐾∗                         (10) 

 

IV. GPR BASED MODEL PREDICTIVE CONTROL 

Introduction to MPC 

Model Predictive Control (MPC) is one member of the most popular and widely spreaded 

control algorithms that the future plant response is predicted using an explicit process model in 
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      industrial use. Thanks to a trustful and robust predicted system output and prediction control 

horizon, the MPC algorithm optimises the controllable variables to use an optimal future plant 

response for the next several steps. The prediction horizon range together with optimisation ability 

of MPC algorithms to handle with constraints that are often met in control practice have made it 

popular and widely used compared to other approaches in many applications [20]-[24]. 

The MPC working standard can be summed up as follows:  

1. Expectation of framework yield signal 𝑦(𝜏 + ℎ) is determined for each discrete example 

𝜏 for future ℎ = 1,2… 𝑁ℎ. Estimations are meant as ȳ(𝜏 + ℎ|𝜏) and defines ℎ - step ahead 

estimation, while 𝑁ℎ is an upper bound of forecast horizon. Yield signal forecast is determined 

from our GP procedure model. Estimations are reliant on the control situation later on 𝑢(𝜏 + ℎ|𝜏); 

ℎ = 1,2… 𝑁ℎ − 1, which is applied from a second 𝜏 onwards.  

2. The vector of future control signals 𝑢(𝜏 + ℎ|𝜏); ℎ = 1,2… 𝑁ℎ − 1 is determined by 

minimization of estimation error ȳ(𝜏 + ℎ|𝜏).  

3. Just the principal component of the optimal control signal vector is applied. In the 

following emphasis, another deliberate yield test is recorded and the entire portrayed procedure 

above is circled inside the loop. 

Data-driven control  

Combining input-output model of dynamic system with our GP model, we write our 

dynamical system as follows 

 

𝑝(𝜏) = 𝑓(𝑥(𝜏)) +  𝜖(𝜏)                                  (11) 

 

𝑥(𝜏) = [𝑝(𝜏 − 𝑙1),… , 𝑝(𝜏 − 1), 𝑢(𝜏 − 𝑙2),… , 𝑢(𝜏), 𝑑(𝜏 − 𝑙3), … , 𝑑(𝜏)]      (12) 

 

with 𝑓 ̴ 𝐺𝑃(𝜇𝑓, 𝜎𝑓
2), 𝜏 - the time step, 𝜖 - measurement noise, 𝑝 - the (past) output, 𝑢 - the 

control input, 𝑑 - the exogenous disturbance input and 𝑙1, 𝑙2, 𝑙3 - the lags for autoregressive outputs, 

control inputs, and disturbances, respectively. 

 Optimization problem 

Now let's focus on our MPC optimization problem. Since, in our case the process model is 

GP, including uncertainity term makes possible to design a robust controller that will optimise 

action according to the validity of model. Overall, the optimization problem with quadratic cost is  

 

min     ∑ ‖�̂�𝑠(𝜏 + ℎ)‖𝑄
2 + �̂�𝑠2(𝜏 + ℎ) + ‖𝑢𝑠(𝜏 + ℎ)‖𝑅

2𝑁ℎ
ℎ=0  

 

s.t.  �̂�𝑠(𝜏 + ℎ) =  𝑚𝑓
𝑠(𝑥𝑠(𝜏 + ℎ)) + 𝐾∗

𝑠𝐾𝑠
−1 (𝑌 − 𝑚𝑓

𝑠(𝑥𝑠)) 

�̂�𝑠2(𝜏 + ℎ) =  𝐾∗∗
𝑠 − 𝐾∗

𝑠𝐾𝑠
−1𝐾∗

𝑠𝑇 

�̂�𝑠(𝜏 + ℎ)  ∈  𝑃𝑠 

𝑢𝑠(𝜏 + ℎ)  ∈  𝑈𝑠                                                                                                                                                                     

(13) 

                                                                    

where 𝑠 stands for machines 𝑎, 𝑏, 𝑐, … ; 𝑃𝑠 is state output constraint set, 𝑈𝑠 is set of feasible 

solutions; ‖𝑥‖𝐴
2 = 𝑥𝑇𝐴𝑥 Euclidian norm for 𝑥 ∈ 𝑅𝑛 and 𝑄, 𝑅 are positive definite matrices. 
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Fig. 3 Structure of GP based MPC. Optimization problem in (10) is solved in every τ time step. 

Here, u -optimized control input vector applied to machines, d - external disturbance vector 

and y - output vector measured from machines. 

 

Minimizing terms mentioned above are common ones when working with GP model based 

dynamical systems and are non-unique. It can be chosen freely depending on the desire and 

constraints. In Figure 3 one can see overall MPC loop structure together with manufacturing 

process whose energy usage is controlled through GP model with the data provided by sensors set 

up on machines. 

V. NUMERICAL EXAMPLE 

Due to complexity and being time consuming of data collection from manufacturing 

process, we omit illustration GP based MPC on real industrial system. Rather, the accompanying 

state space model below (11) outlines the utilization of proposed GP strategy for system 

identification of highly fluctuating and non-periodic system. Simulation were carried out in Matlab 

software and CPU Intel Core i5-5200U.  

Consider the following discrete nonlinear system: 

 

{
 
 

 
  𝑦1(𝜏 + 1) =  𝑦1(𝜏) + sin(𝑦1(𝜏)) +

1

2
(𝑢1(𝜏) + 𝑢3(𝜏)) + 𝜈(𝜏)

𝑦2(𝜏 + 1) =  𝑦2(𝜏) +
4

5
cos(𝑦1(𝜏)) +

3

5
𝑢1(𝜏) − 𝑢2(𝜏)              

𝑝(𝜏) =  𝑦2(𝜏) + 𝑤(𝜏)                                                    

(14) 

 

The yield of the given model is output 𝑝 (can be looked as machine power) that is disrupted 

with Gaussian white noise with 𝜈  ̴ N(0,0.002), whereas state  𝑦1 is suffered by noise 

𝑤  ̴ N(0,0.0035) We generate 3 inputs by a random number generator with uniform distribution 

in the magnitude between 10 and 20 for the first input, between 5 and 10 for the second input, and 

in range 0 and 1 for the last input with number of samples N =  600 by not changing control 

signals  𝑢1 consecutive 4 time instants,  𝑢2 consecutive 6 time instants and  𝑢3 consecutive 8 time 

instants.  Here, our task is to obtain a GP model for given inputs of the discrete-time system 

described by (11) based on statistical data and by following step by step the proposed methodology 

in the section III. We use 66 % of the generated data set N (the rest is used for testing), and the 

system is modeled by Gaussian Process Regression with zero mean and the covariance function, 

which is composed of sum of squared exponential and periodic covariance functions. We tried 

several composite covariance functions, but this one performed with better accuracy. 
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Fig. 4 GP model performance for the training signal. Upper part plots the true values, the 

predicted mean and 95 % confidence intervals, whereas below part shows the absolute 

residuals. 

 

 
Fig. 5 Control signals of training data 

 
Fig. 6 Control signals of test data 

 

 
Fig. 7 GP model performance for the test signal. Upper part plots the true values, the predicted 

meanand 95 % confidence intervals, whereas below part shows the absolute residuals 

 

Models of various orders were fitted as highlighted in Table 1 , as a result our proposed 

approach found the second order model with 𝑙𝑝 = 2, 𝑙𝑢1 = 1,  𝑙𝑢2 = 1,  𝑙𝑢3 = 1, and 𝑙𝑑 = 0 as the 

most appropriate with metrics NRMSE=0.00950 and MSLL=-3.1754 provided in [20]. The results 

of the Gaussian Processes model to the training and test signals are given in Figure 4 and Figure 

7, respectively. One can see that, even though test data fitting graph has larger variance, it still 

captures the trajectory well. On the other hand, Figure 5 and Figure 6 illustrates control signals 

applied to the system during model identification, where we can see not repeated line graphs, 

values are different for each control signal in both phases. Furthermore, it is remarkable that the 
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      system is depend on control signals at the previous time step, because in absence of controller 

signal, the accuracy experienced a significant decrease Table 1. 

Table 1. GPR modeling accuracy results for test data. 

MODEL ORDER NRMSE MSLL 

𝑙𝑝 = 3,𝑙𝑢1 = 2, 𝑙𝑢2 = 2, 𝑙𝑢3 =

2, 𝑙𝑑 = 1 

0.15098 -

1.02915 

𝑙𝑝 = 2,𝑙𝑢1 = 1, 𝑙𝑢2 = 1, 𝑙𝑢3 =

1, 𝑙𝑑 = 0 

0.00950 -3.1754 

𝑙𝑝 = 2,𝑙𝑢1 = 1, 𝑙𝑢2 = 2, 𝑙𝑢3 =

1, 𝑙𝑑 = 0 

0.01844 -

2.09245 

𝑙𝑝 = 2,𝑙𝑢1 = 0, 𝑙𝑢2 = 1, 𝑙𝑢3 =

1, 𝑙𝑑 = 0 

0.11951 1.08813 

 

VI. CONCLUSIONS 

This paper tried to show how dynamic systems can be modelled using machine learning. 

Specifically, Gaussian Processes Regression is applied to historical data collected from sensors of 

production machines. Once we have defined the modelling sequence, we connected the idea with 

the possibility to use this algorithm in controlling the manufacturing system in an optimized way, 

where the Model Predictive Control loop defines optimal solutions for each control time step. In 

the end, the numerical example presented GPR modelling potentials. The proposed approach can 

be looked at as a new tool for identifying energy-saving perspectives and quantifying their 

respective energy-saving potentials. 

Moreover, it provides a trust region with 95 % confidence that enables the discovery of 

unseen energy-saving challenges that seem hard to identify. In particular, this can be a fundamental 

idea for companies with successful energy improvement programs to empower their research areas 

for further improvement. Our next mission will be to show the interpretability and advantages of 

the proposed method through experimental results based on data of real system dynamics. 
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