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Abstract. This paper investigates the motion of the Maxwell pendulum in a uniform 

gravitational field. In addition, using the Maxwell pendulum, the theoretically and 

experimentally found values were compared and analyzed. The threads on which the axis and the 

disk of the pendulum have been suspended are assumed to be weightless and inextensible, and 

the characteristic linear size of the disk is assumed to be small compared to the lengths of 

threads. 

Theoretical values of the nonlinear properties are derived using the conservation of 

energy and with respect to small deviations of the threads from the vertical. 

Keywords: Pendulum, the conservation of energy, equation of motion, predictions. 

О ДВИЖЕНИИ МАЯТНИКА МАКСВЕЛЛА 

Аннотация. В данной работе исследуется движение маятника Максвелла в 

однородном гравитационном поле. Кроме того, с помощью маятника Максвелла были 

сопоставлены и проанализированы теоретически и экспериментально найденные 

значения. Нити, на которых подвешены ось и диск маятника, предполагаются 

невесомыми и нерастяжимыми, а характерный линейный размер диска малым по 

сравнению с длинами нитей. 

Теоретические значения нелинейных свойств получены с использованием закона 

сохранения энергии и с учетом малых отклонений нитей от вертикали. 

Ключевые слова: маятник, закон сохранения энергии, уравнение движения, 

предсказания. 

 

INTRODUCTION 

The Maxwell pendulum is a device consisting (Fig. 1) of a massive disk rigidly fixed on 

an axis perpendicular to the disk plane and passing through its center of gravity. Furthermore, the 

apparatus consists of a disk of radius R having an axis of radius r (with r << R) (Fig.2). The axis 

is suspended on two identical long and thin threads. The threads are considered to be weightless 

and inextensible; in the equilibrium position of the disk, the axis occupies a horizontal position. 

Maxwell pendulum is used to illustrate the properties of the plane motion of a rigid body in a 

uniform gravitational field, in particular, to demonstrate the transition of the kinetic energy of a 

rotating body into its potential energy and vice versa.  

      Fig.1.The Maxwell’s Pendulum                                                    Fig.2                 
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MATERIALS AND METHODS 

The mechanical energy of a system is the result of the sum of kinetic and potential 

energies. When there are only conservative forces, the principle stating that “during 

transformation, partial energies are transformed, whereas mechanical energy is preserved” is 

valid. Winding the wires around the axis will load the flywheel to reach a certain height from the 

reference plane. When released, the flywheel starts to go down, gathering speed. When it arrives 

at the lowest point allowed by unwinding wires, the pendulum will rewind in the opposite 

direction and starts going upwards again. In ideal conditions, it would come back to the same 

starting height; however, motion is damped by friction with wires and with the medium (air), and 

after a certain number of oscillations, the pendulum will stop at the lowest point allowed by 

wires. The principle of energy conservation is used to determine the pendulum’s period, that is, 

the time the flywheel spends going down and up: the kinetic energy of both translation and 

rotation will compensate for the variations of potential energy. All the energy is potential at the 

max height, whereas all the energy available at the lowest point is kinetic. That could continue 

ad infinitum in an ideal system, but the wheel will stop at a certain point because of friction. The 

system must be equipped with two sensors (a force sensor and a distance sensor) that are 

interfaced to the datalogger and PC to study system kinematics and dynamics. The pendulum 

hooks onto the force sensor via a pair of parallel wires tied to the pendulum ends on the central 

axis. The position sensor is arranged at the system's base, enabling the assessment of the speed 

with which the wheel arrives at the end of its travel using the sonar technique. The system used 

in this equipment is characterized by a high frequency of data acquisition and by versatile data 

processing software enabling to study of the up and down movement of the pendulum in a 

practical way. When conducting an experiment, the thread is neat, and a coil to the coil is wound 

on the axis, due to which the disk rises to a certain height. If the disk is released, then under the 

influence of gravity, it will begin to fall down, rotating around the axis. In this case, the threads 

will be stretched, and the axis will be horizontal. This movement continues until the threads are 

entirely unwound. After this moment, the disk rises up while the threads remain taut and are 

wound on the axis. If threads are inextensible and the resistance of the environment is negligible, 

then the disk will rise to its original height, and the process is repeated. The frequency of this 

process gives reason to call the device in question a pendulum. In the described movement, the 

angle the threads make with a fixed vertical plane (passing through the points of suspension) 

equals zero. The article's primary purpose is to study the dynamics of the pendulum's motion and 

compare it with experimental results. 

1. The relation between the speed and position 

Let be the pendulum's mass (equal to the sum of the masses of the disk and the axis on 

which it is fixed). We assume that the axis is a cylinder of radius r, and the center of mass of the 

pendulum coincides with the center of mass of the disk. We denote the moment of inertia of the 

pendulum about the axis perpendicular to the plane of the disk and passing through the center of 

mass. 

RESULTS 

We based the model on energy conservation. Let the starting point be a height of h- the 

wounded state of the pendulum. In this, 𝑈(𝑥) −referred to the potential energy of a system 

(𝑈(𝑥)=0, when 𝑥 = 0). The total energy of the system 𝐸 = 𝑚𝑔ℎ (when 𝑥 = ℎ, 𝑣 = 0) turns into 
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translational kinetic energy 𝐸𝑡 =
1

2
𝑚𝑣2 and rotational kinetic energy 𝐸𝑟  =

1

2
𝐼𝜔2 during the fall. 

Assuming minimal energy loss, we can  

                                                      𝐸 = 𝐸𝑝 + 𝐸𝑡 + 𝐸𝑟  (1), or 

                                                                                                                  

                                                     𝐸 = 𝑚𝑔ℎ +
1

2
𝑚𝑣2 +

1

2
𝐼𝜔2 (2) 

This energy balance explains why the linear acceleration is less than g. To test the model, 

we should write the acceleration as a function of directly measurable quantities. To do this, we 

exploit the fact that the translational and rotational motions are not independent. 

Using an upward vertical axis with the origin in the equilibrium position, the rotation 

angle α(t) is related to the displacement 𝑥(𝑡) by: 𝑥(𝑡) = 𝑟𝛼(𝑡) (where 𝑟 is the axis radius), while 

the angular velocity is related to the linear velocity by: 

                                                                𝑣(𝑡) = 𝑟𝜔(𝑡)  (3) 

Using these equations, we can write all the quantities as a position and velocity function. 

Thus, the equation for the conservation of energy becomes: 

𝑚𝑔(ℎ − 𝑥) =
1

2
𝑚𝑣2 +

1

2
𝐼𝜔2  (4) 

 

 , where  
1

2
𝑚𝑣2 +

1

2
𝐼𝜔2 is equal to    

1

2
𝑚(1 +

𝐼

𝑚𝑟2). We can also name  (1 +
𝐼

𝑚𝑟2) as a 

constant 𝑘. 

Therefore, the energy balance is  

  𝑚𝑔(ℎ − 𝑥) =
1

2
(𝑚𝑘)𝑣2 (5)    

Solving with respect to velocity, we get 

     𝑣(𝑡) = √
2𝑔

𝑘
(ℎ − 𝑥)     (6) 

 

From this we can get that the motion of the disk is very much the same as the free-falling 

object. 

The acceleration of the disk is  

                        

𝑎 =
𝑔

𝑘
=

𝑔

1 + 𝐼/𝑚𝑟2
   (7) 

 Note that for r<<R, the moment of inertia of the disc is approximately 𝐼 ≈ 𝑚𝑅2/2 

 2. Equation of motion   

We assume that the axis is a cylinder of radius r, and the center of mass C of the 

pendulum coincides with the center of mass of the disk. Let l be the length of each of the threads 

in their unwound state. D is the distance from the suspension point O of any of the threads to 

point A of its descent from the axis of the pendulum (Fig.3). Two generalized coordinates set the 

position of the pendulum: the angle θ between the direction of the threads and the vertical plane 

passing through the points of suspension of the threads, and the value.  

                                                     Fig.3.Deriving the equation of motion 

 



 
SCIENCE AND INNOVATION 

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 

UIF-2022: 8.2 | ISSN: 2181-3337 

 

 

 171 

 

                                                                
Because the thread is inextensible, we have the following non-retaining bond 

𝜉 ≥ 0   (2.1)   

The vectors 𝑣𝐴 and 𝑣𝐵 of the velocities in points A and C are related by the following 

equation 

𝑣𝐶 = 𝑣𝐴 + 𝜔 × 𝐴𝐶    (2.2) 

  

, where ω is the vector of the instantaneous angular velocity of the disk, and this vector 

has a horizontal direction. Since the threads are inextensible, the vector 𝑣𝐴 is collinear to the 

vector AC, and for the modulus of the vectors ω and 𝑣 𝐴, we have the following 

𝜔 = |𝜃̇ −
𝑑̇

𝑟
|,     𝑣𝐴 = 𝑑|𝜃̇|  (2.3) 

The dots refer to the differentiation with respect to time. 

From Koenig’s theorem, taking equations (2.2) and (2.3) into account, we obtain an 

expression for the kinetic energy of the pendulum, 

𝐸𝑘 =
1

2
𝑚(𝑙 − 𝜉)2𝜃̇2 +

1

2
(𝐼𝑐 + 𝑚𝑟2) (𝜃̇ +

𝜉̇

𝑟
)

2

.    (2.4) 

The Potential energy of a pendulum 

𝐸𝑝 = 𝑚𝑔[𝜉𝑐𝑜𝑠𝜃 + 𝑟𝑠𝑖𝑛𝜃 + 𝑙(1 − 𝑐𝑜𝑠𝜃],   (2.5) 

g is the acceleration of gravity 

For 𝜉 > 0, the motion of the pendulum corresponds to the Langrage function  𝐿 = 𝐸𝑘 −

𝐸𝑝. 

For 𝜉 = 0, the motion of pendulum has the character of an absolute elastic impact. 

Therefore, we have 

𝜉̇+ = −𝜉̇−.   (2.6) 

Using (2.6), we can find that 𝜏 = 2√2𝛼𝑘𝑙 𝑔⁄ , where α and 𝑘 are the constant numbers 

referring to the followings 

𝛼 =
ℎ

𝑙
 (0 < 𝛼 < 1),       𝑘 = (1 +

𝐼𝐶

𝑚𝑟2
)  (𝑘 > 1).      (2.7) 

The following equation corresponds to the unperturbed periodic motion of the pendulum. At 0 ≤

𝜏 < 1,  

𝜃 = 0, 𝜉 = −
𝑔

2𝑘
𝑡2 + √2

𝛼𝑔𝑙

𝑘
𝑡     (2.8) 
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DISCUSSION 

The initial moment of time t=0 is taken as the moment when 𝜉 = 0, and as we found in 

the previous section, the center of the disk starts its movement with √2
𝛼𝑔𝑙

𝑘
 velocity. At 𝑡 = 𝜏/2, 

the pendulum reaches the maximum height of h. * 

*[The same results were derived in this way in the paper “On the stability of motion of 

the Maxwell pendulum’’ by A.P. Markeev (eq. 2.8)] 

3. Checking predictions 

The moment of inertia of a homogenous cylinder, as we mentioned, above is  𝐼 = 𝑚𝑟2/2. 

Our disk is made of 2 cylinders. However, R is much bigger than r, which makes it 

possible to approximately calculate the moment of inertia with the following equation 

𝐼 = 𝑚𝑅2 = 𝜋𝜌𝑅4 2⁄  

, where R=49mm. This makes the value of k to be ≈ (𝑅 𝑟)⁄ 2
/2.  

CONCLUSION 

 In figure 4, the predicted values were 𝑘 ≈ 270 and  𝑔 𝑘⁄ = 0.036 𝑚 𝑠2⁄  .The 

experimental value  𝑔 𝑘⁄ = 0.046 𝑚 𝑠2⁄ . In performing the experiment, we neglected some 

important features, such as the assumption of zero thickness of the string and the effective value 

of the radius. Therefore those results agree very well with the experimental results.  

From the experiments, we can see that the motion of the pendulum is similar to that of a 

free-falling object, but with different acceleration. 
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