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Abstract. The paper deals with the problem of pulsating flow of an incompressible
viscous fluid in a permeable-walled flat channel. In this case, the length of the flat channel is
considered to be large enough. That is, the ratio of channel width to channel length is small
enough, the ratio of transverse velocity to longitudinal velocity, and the Reynolds number are
also sufficiently small that the Nave-Stokes equation dashed and the necessary boundary
conditions are formed. As a result of solving the problem, appropriate formulas were obtained
and analyzes were performed. Based on the results of the analysis, it is shown that the pulse
wave propagation velocity at sufficiently small values of the oscillation frequency parameter is
2

determined by the formula ¢, =5 - formula, and this formula is accepted as the base

h?y*
pulse wave propagation velocity. It was shown that the pulse wave propagation velocity did not
differ significantly from the base pulse wave propagation velocity at small values of the
oscillation frequency parameter, and that the pulse wave propagation velocity at its large values
differed significantly from its base velocity. In addition, the attenuation of the pulse wave
depending on the oscillation frequency parameter was analyzed, it was found that at low values
of the oscillation frequency parameter the attenuation of the wave is almost non-existent, and at
its large values the attenuation rate increases significantly.

Keywords: kinematic viscosity coefficient, Nave-Stokes equation, pressure, Poiseuille
stream, boundary condition, conductivity coefficient, vibration frequency.

MIMYJBbCHUPYIOIEE TEUEHUE )KUJIKOCTHA B IIJIOCKOM KAHAJIE C

MNPOBOJSIIENA CTEHKOM

Annomayusa. B pabome paccmampusaemcs 3adaya o NyIbCUpyrOueMm meyeHuu
HecoHcUMAeMoll 8A3KO0U AHCUOKOCU 8 NIOCKOM KaHajle C npoHUYyaembiMu CmMeHKamu. Hpu IMOoM
OIUHA NIOCKO20 KAHANA cyumaemcsa oocmamoyno bonvuwou. To ecmv omuowenue wupursl
Kanana K OauHe Kamaia 0ocmamoymo Mano, onmHoulerue nonepelmod CKopocmu K I’lpO()OJZbHOﬁ
ckopocmu u qucio Petinonvoca maxoice docmamouno mansl, umobwsl ypasnenue Hasa-Cmoxca
CMAN0 UWMPUXOBLIM U CHOPMUPOBANUCL HEe0OX00uMble paHuyHble Yclosus. B pezyremame
peuieHus 3a0auu OblLIU NOJYYEeHbl COOMBemMcmaywue Gopmyivl U npogedensvl ananusvl. Ilo
pes3yiomamam anaiuza NOKA3AdHO, 4mo CKOpOCmb pacnpocmpaHeHUs nyJZbCOGOﬁ 60JIHblL npu
00CMAamo4HO MAbIX 3HAYEHUSAX Napamempa 4acmomsl Kojaebanuii onpeoensemcs no gopmyne

2
N
h*y

pacnpocmpareHnus nyavco8ou 8o0Hvl. Ilokaszano, ymo cKopocms pacnpocmpaHeHus nyibCo80u
60JIHbl CYWECMBEHHO He omJjudaemcs om bazosoii CKopocmu pacnpoCmpaHeHUus ny]leOGOZZ
BOJIHbL NPU MAJILLX 3HAYEHUAX napamenmpa 4acnionsl K0ﬂ€5aHu11, a CKopocmb pacnpocmpaHeHusl

- ¢opmyna, u osma opmyra npunumaemcs 3a 6a308yl0 CKOPOCHb
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NYIbCOBOU BONHLL NpU ee OONbWUX 3HAYEHUAX CYWEeCMBeHHO OMauYaemcs om ee 0a30801u
ckopocmu. Kpome moeo, npoananuzupoeano 3amyxanue nyibCO80U G0IHbL 8 3A8UCUMOCTU OM
napamempa 4acmomsl KOJNeOAHUU, YCMAHOGNEeHO, 4MO NpU MAIbIX 3HAYEHUSAX napamempa
yacmomul KoaeOAHUll 3amyxauue 60JHblL NPAKMUYECKU OMCYmcmeyem, a npu OOIbUUX e20
3HAYEHUsX CKOPOCMb 3AMYXaHUs Y8eIUdu8aemcs. CyujecmaeHHo.

Kniouesvie cnosa:. kosgpguyuenm Kunemamuueckou esa3kocmu, ypasnenue Haesa-
Cmokca, oOaenenue, nomox Ilyaseiins, epanuunoe ycrosue, Kod(pduyueHm nposooUMocmu,
yacmoma Konebanuil.

INTRODUCTION

Theoretical studies [1-5,10-23] have shown that solving problems about the pulsating
flow of viscous fluid in conductive-walled flat channels leads to serious mathematical
difficulties. Therefore, simplification methods are used to solve such problems, or the problem
[5-9] is solved on the basis of average velocities along the channel section. This paper discusses
specific issues about the pulsating flow of viscous liquids in conductive-walled flat channels.
The main purpose is to study the motion of viscous fluids on the basis of simplified
mathematical modeling and compare the results with the hydrodynamic laws of fluid flow in flat
channels, especially in impermeable walls, and, consequently, to identify new hydrodynamic
effects. It is known that stationary oscillating (pulsating) currents, in which the transition
processes in the flow of liquids do not occur, are of particular interest in science, engineering and
technological processes. In such processes, even if the motion of the fluid occurs in a stationary
mode, due to the presence of oscillating motion, the process under consideration is a periodic
function of time. In this case, it is assumed that the oscillations of the fluid occur in the same
state in each period. Therefore, in solving problems related to fluid flow, it is possible to use the
periodic functions of time, which makes it much easier to solve a system of differential
equations. Numerous scientific and practical researches have been devoted to the pulsating
currents in flat-walled flat channels and cylindrical pipes by domestic and foreign scientists. In
particular [7-11], nonstationary, stationary oscillating currents of pulsating viscous fluids in
channels and tubes have been sufficiently investigated. Womersley [22—27] was the first to apply
scientific research to the flow of pulsating viscous fluids in the circulatory system of
biomechanics. In this case, blood is considered as a Newtonian fluid, and its flow is
characterized by the formation of a pressure gradient under the influence of a function expressed
in sinusoidal and general form using the Fure series. Although the cases of pulsating currents in
ducts and pipes considered to be Newtonian fluids [1,2,5,9,10,20,21] have been sufficiently
studied, very little research has been devoted to the fluxes of viscous fluids in permeable wall
ducts and tubes in this area [11-19]. Therefore, in this paper, the pulsating flows of viscous
liquids in conductive-walled flat channels are considered. The result is compared with the laws
of pulsating flow in the existing impermeable wall channels and the required hydrodynamic
effects are obtained.

MATERIALS AND METHODS

In this paper, the pulsating currents of viscous liquids in conductive-walled flat channels
are considered for a case where the channel length is large enough. In this case, the ratio of
channel width to channel length is considered small enough, the ratio of transverse velocity to
longitudinal velocity, and the Reynolds number are also considered small enough. Given these
conditions, the Nave-Stokes equation [3,4,6-8] is linearized by moving from the old variables to
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the new variables and without taking into account the limits involving small parameters in the
system of equations, and it looks like this:

(1)

Here U, - longitudinal and transverse velocities, respectively; p - fluid density; p -
pressure X, Y -appropriate longitudinal and transverse coordinate axes; t -time; v -kinematic

viscosity coefficient.
It is known that in stationary oscillating (pulsating) currents in which no transition
processes occur in the flow of liquids, even if the oscillations occur in a steady state, the process
under consideration consists of a periodic function of time. In this case, it is assumed that the
oscillations of the fluid occur in the same state in each period. Therefore, in solving problems
related to fluid flow, it is possible to use periodic functions of time, which makes it much easier
to solve a system of differential equations. Therefore, since we consider the flow under the
influence of the pressure gradient here, the pressure gradient can be obtained by the function in

this view
_1lop (- 1éT(x)) a 1p

pax > ox ( ))cos wt) 2

here
_10p _ (_l IPy(X)
L OX o OX
is the pressure gradient that forms the steady flow
BN N YO
L OX L OX
It is the pressure gradient that creates the oscillating (pulsating) flow.

Since the change in pressure gradient is expressed by a complex function, other quantities
that characterize the flow are also expressed in terms of a complex function.

U=U,+U e, =9 +39e”, p=p,+pe”, Q=Q, +Qe" ()
Substituting these gquantities (5), (4) and (3) into the system of equations (1) and equating

it

) (3)

(4)

the expressions before €™, we obtain the following system of equations:

0=( 16p0)+ Uy

< p OX oy?’
%:0, %Jr%:o (6)

| oy ox oy
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iU, =( aﬁl)+va u21,
) p OX oy
%:0 ou, 08 _ )
| oy OoX oy

To solve the system of equations (6) and (7) we need to form boundary conditions.
Depending on the problem, we define these conditions for the system of equations (6) as

follows.

2 (8)

For a similar system of equations (7), we define as follows

y =0, aa—‘;lzo, 4 =0

(9)

*

h o
y=h, u, =0, Slz%(pl—pc)

It is known that the solution of the system of equations (6) satisfying the boundary
condition (8) is given in detail in the work [19], and the analysis of the solutions is also
carried out. Therefore, in this paper, we solve the system of equations (7), (9) relating to the

pulsating flow of a viscous fluid on the basis of boundary conditions.

2 -
0 uzl_la)ulz 1 abl) (10)
oy 14 PV OX

These are fundamental solutions of the homogeneous part of the equation
3

cos(i?«, y) Ba sm(l a, y) (11)

consisting of functions, the general solutlon of a genital part is found in the following view:

3 3
a(y) = C, cos(i2a, %) +C,sin(i2e, %) (12)

Since the heterogeneous part of the equation is only a function of the variable X, its solution is

sought in this view:
22—k

0" = A(X), in this case 0 u2 = 0, the solution of the non-homogeneous part of equation
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. 1 op, (X . L )
— pl( )) With this in mind, the overall solution to the

(12) will be U =—(
pPlw OX
problem is determined as follows:
3 3
o(y) =C,cos(i?«, l) +C,sin(,i%«, 1) + 1 (— abl(X)) (13)
h h yollo) OX

We find the integral unknown coefficients in solution (13) from the boundary condition (9).
(13) It follows that if we take the product of both sides of solution Y and make it equal to

zero C, =0. The coefficient (2) is found from the boundary condition (1).

1 op, (X 1
C=r( Ry L (14)
p cos(i?a,)
By substituting the values of the coefficients C, and C,into solution (13), we obtain this
solution.
>y
cos(i?ay =)
_ 1 op, (x 0
o, y)=—— By~ Phi (15)
plw OX =
cos(i?«,)

@
here &, =\/:h, v=1
v P

Substituting the found solutions (15) into (13), we determine the following final solution.

_ , .
CoS izaoi
1 h) et
1 g (16)

2
u(x,y,t)zh—(—aﬁl—(x)) 2real | —| 1—-
2n OX i, cos(iz J
240

As a result of dividing the solution (16) formed for the velocity by its maximum velocity in
the stationary state, a dimensionless solution of this form is found.

3
COS(I a, zj
uxy.9 =3(- pl)real : 12 1— 't (17)
<Uu, > OX i 3
° ° cos| i2a,
here <U, >= Bi(_@%_(x)j h? - the maximum velocity of the stationary flow in which the
n X Jo

wall of the Nevvtonian quid is impermeable;

_OPyy
(——=)/( )0 8X . Integrating both sides of formula (17) for velocity distribution
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from (1) to (2) and dividing it by (3), we obtain the following formula for the average velocity
of a liquid.

<U(xt)>=

3
Sin(izaoJ
UGt > (—?)real 3 11 et | (18)
X

Uy > o5 3 3
I2a, |cos| i%a,

here <U, >:i(—@j hz-average longitudinal velocity in a stationary Poiseuille flow.
3n\ OX J,

Now that the flat channel wall is permeable using these found formulas, the pressure gradient

here and the average velocity will be variable along the longitudinal axis. Therefore, using the

boundary condition and using the relationships between the average velocity and the pressure

gradient through the formulas found, we construct the following system of equations to

determine their changes along the longitudinal axis.

P(x) =—z<U(x)>,
OX
o<u(x)>_ (19)
OX - kp(x)

i 3
3 sin(iza()]
i 1- 3 3
12a, |COS| 1%a,

Differentiating the first equation of the system of equations (19) on the variable x, we obtain

N
I

. . L _ . o<u(x)>
this equation by substituting its value in the second equation ————— .
) = - - 3y
-kZp(x)=0, k=-—". (20)
PV p(x) oz
The boundary condition for this equation is as follows
N
pP= Z P at x=0,
n=1
N
p=> P at x=L. (21)
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In this case, the solution of equation (20) (21) is given by the boundary condition as follows.

sh EfL(l—Xj shikzL X
=0 L =L L

P(X)= — +Pp — , (22)
) shyk ZL " shykzL
Ch\/EL(l—Xj shykzL” [

<TU(x)>=py __ L g Lﬁ- (23)
sh\/EL sh\/EL z

To give the results of the calculations using formulas (22) and (23) found, we begin by analyzing
the properties of the magnitudes in the argument of the hyperbolic sine and hyperbolic cosine
functions. It is known that these magnitudes are one of the main factors of wave propagation,
and these arguments can be used to determine the speed of propagation of a pulse wave and its
extinction along the longitudinal axis. Below we present the results of the analysis of these
quantities.

RESULTS

The formulas found (22) and (23) express the change in pressure and longitudinal
velocity along the longitudinal axis, and since these formulas are mainly dependent on the

complex parameter \/IZTL, we express it in this view:

kZL=y+ fi . (24)
E 1
3 sin(izaoJ 3,
here 7 =| —|1-—— / . k=22 (25)
|ao = = h
[IZ%JCO{IZ%}
We distinguish the real and a_bstract partsof Z asfollows :
3
sin| 1%a, _
- 3 R
Z=|—|1-- 2 =—+—I
o = e 3
[IZGOJCOS(IZO(OJ
ﬁ_ag(Af+Bf)B _(Af+Bf)a§A2
(A7 +BF) A; +B; ’

here

A =AM, +BM,. B=1AM,-Bi,.

4, =(4 +B})-4C-BD. B =(BC-4D)
C=sin M,chM,, D=-cosM,shM,.
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3
Q

iECZO =
J2

Now we find y, B by substituting the values of Z and K into the formula
JKkZL= 7+ i
KzL= L,/?’lz\ﬁ(\“/ﬁz + 2 (cos? +isin?)) =
h \3 2 2
, /7—2L(\4/ R?+ 2 (cos? +isin2)), p=arctg L
h 2 2 R
From this formula we find }, ,E accordingly:

f:‘/%L(\4/F32+E2cos%) b= %L(\4/§2+[Zsing)

(L—i) =M, — Mi

_ . . o 1 .
here y - the coefficient characterizing the extinction of the wave; —— a coefficient that

. . ol :
characterizes the speed of propagation of a pulse wave; ¢ =-— - pulse wave propagation

2

velocity; ¢, =5 - base pulse wave propagation velocity; »* — wall conductivity; 7 —

h?y"
viscous dynamic coefficient of the liquid; @ - vibration frequency; L —pipe length; p-

density.

w
From formula ¢ =

B

2
c= %L = ol - /h‘; *ag(\“/l?%ZZsin%)‘l
,/ZZL(\“/I? N Psin‘;) 4

L. ao(YR2+ sin )
Cs 2

DISCUSSION

Based on the formulas determined as a result of solving the problem, an analysis was
performed on the pulse wave propagation velocity, depending on the oscillation frequency
parameter.

Figure 1. illustrates the variation of the pulse wave propagation velocity depending on
the oscillation frequency parameter. At sufficiently small values of the oscillation frequency
parameter, it was found that the pulse wave propagation velocity was expressed by formula

we find the velocity of propagation of the pulse wave
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and this formula was adopted as the base pulse wave propagation velocity.

Figure 1.

1 2 3 4 5 6

The change in pulse wave propagation velocity depending on the oscillation frequency
parameter.
The figure shows that the pulse wave propagation velocity does not differ significantly from
the base pulse wave propagation velocity at small values of the oscillation frequency
parameter. At large values of the oscillation frequency parameter, it was found that the speed
of propagation of the pulse wave differs significantly from its base velocity.
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Figure 2.

The change in magnitude inverse of the wavelength obtained relative to the wavelength
depends on the oscillation frequency parameter.
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Figure 2. illustrates the change in the magnitude of the wavelength relative to the wavelength
obtained inversely with the oscillation frequency parameter. As can be seen from the figure, at
low values of the oscillation frequency parameter, the extinction of the wave is almost non-
existent, while at its large values, the extinction rate of the wave increases significantly.
CONCLUSIONS
Based on the results of the analysis, it was shown that the pulse wave propagation
velocity at sufficiently small values of the oscillation frequency parameter is determined by
2
the formula c,=5

hy -formula, and this formula is called the base pulse wave
propagation velocity. It was shown that the propagation velocity of the pulse wave did not
differ significantly from the propagation velocity of the base pulse wave at small values of the
oscillation frequency parameter. At large values of the oscillation frequency parameter, it was
found that the speed of propagation of the pulse wave differs significantly from its base
velocity. The extinction of the wave was analyzed depending on the oscillation frequency
parameter. The result of the analysis showed that at small values of the oscillation frequency
parameter the extinction of the wave almost does not occur, and at its large values the

extinction index of the wave increases significantly.
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