INTERNATIONAL SCIENTIFIC JOURNAL

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РЕТИНАЛЬНОГО КРОВОТОКА ПРИ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИИ

Жалалова Д.З.

Самаркандский государственный медицинский университет

https://doi.org/10.5281/zenodo.6748982

Аннотация. В настоящее время существует целый ряд инструментальных методов исследования, позволяющих осуществлять как качественную, так и количественную оценку состояния кровообращения в крупных сосудах глаза и орбиты. Однако, комплексная оценка кровотока в мелких сосудах ЦАС и ЦВС недоступна стандартными методами исследования.

Ключевые слова: В качестве граничных условий на «входе» в сосудистую сеть задаётся временной профиль скорости, определённый с помощью анализа спектра допплеровского сдвига частот (СДСЧ) для каждого пациента.

MATHEMATICAL MODELING OF RETINAL BLOOD FLOW IN ARTERIAL HYPERTENSION

Abstract. Currently, there are a number of instrumental research methods that allow both qualitative and quantitative assessment of the state of blood circulation in the large vessels of the eye and orbit. However, a comprehensive assessment of blood flow in the small vessels of the CAS and CVS is not available using standard research methods.

Keywords: As the boundary conditions at the "entrance" to the vascular network, the temporal velocity profile is set, determined by analyzing the spectrum of the Doppler frequency shift (DSFS) for each patient.

ВВЕДЕНИЕ

В настоящее время существует целый ряд инструментальных методов исследования, позволяющих осуществлять как качественную, так и количественную оценку состояния кровообращения в крупных сосудах глаза и орбиты . Однако, комплексная оценка кровотока в мелких сосудах ЦАС и ЦВС недоступна стандартными методами исследования.

В связи этим нами была разработана математическая модель глазного кровотока с учетом морфологических и функциональных особенностей ретинального кровообращения каждого обследованного пациента, и предложена компьютерная программа для определения количественных показателей гемодинамики в сосудах сетчатки.

МАТЕРИАЛЫ И МЕТОДЫ

В качестве основы использовалась одномерная сетевая динамическая модель кровообращения [98, 129, 272]. Модель описывает пульсирующее течение вязкой несжимаемой жидкости (поток крови) в сети эластичных трубок (сосудов). При выполнении данной работы впервые использовалась реконструкция ретинального сосудистого русла (артерий и вен) на основе данных калиброметрии. Проведен анализ показателей линейной скорости кровотока в ЦАС и ЦВС с дальнейшей гладкой аналитической аппроксимацией. Определение параметров (параметризация) этой аппроксимации выполнена с использованием индивидуальных показателей кровотока пациента — максимальной систолической(Vsyst) и конечной диастолической (Vdiast)

INTERNATIONAL SCIENTIFIC JOURNAL

скоростей, интервала от начала систолы до ее пика и от начала и до конца систолы. Данная методика использовалась для постановкипограничных значений на «входе» и «выходе» сосудистой сети модели, построенной по индивидуальным данным каждого пациента. Такой подход является универсальным и может использоваться при обработке данных ультразвукового дуплексного сканированияорбитальных сосудов.

РЕЗУЛЬТАТЫ

Результаты расчетов параметров кровотока на примере 10 пациентов представлены в таблице17, судя по которым в большинстве случаев отклонения индекса резистентности не превышают 1% в а2. Значительное влияние на результаты расчетов может оказывать оценка диаметра ЦАС. При уменьшении диаметра ЦАС отличие временных профилей линейной скорости в ЦАС и а1(рис. 21) становится более существенным. Тем не менее, достаточное совпадение значений индекса резистентности в сосудах а1 и а2, несмотря на существенные отличия поперечногодиаметра сечения, свидетельствует об адекватности оценки ЦАС описанным способом.

Используя вышеуказанные методы и выведенные формулы, с целью автоматизации расчетов, была написана компьютерная программа, в которую вписан программный код с зафиксированной последовательностью вычислений,приведенных ранее. С помощью данной программыбылиопределены параметры гемодинамики в ретинальных сосудах у пациентов с субклиническим атеросклерозом, артериальной гипертензией 1-2степени и в группе контроля.

При анализе показателей ретинального кровотока у пациентов I группы отмечалось увеличение Vsyst и RI (p<0,001) в артериях I порядка и повышение RI в артериях II порядка (p<0,001) по сравнению с таковыми показателями в контрольной группе (таблица 18). У пациентов II группы было выявлено повышение Vsyst в артерияхII порядка (p<0,01) относительно группы контроля. В III группе отмечалось снижение Vsyst и увеличение RI в артериях I и II порядка по сравнению с контрольной группой (p<0,05).

Регистрировали снижение линейной скорости кровотока в венах первого и второго порядка у всех пациентов по сравнению с таковым показателем в группе контроля. Таблица 18 Средние показатели гемодинамики в ретинальных сосудах (M ± m)

Ретинальные сосуды	I группа (n=43)	II группа (n=40)	III группа (n=48)	Группа контроля (n=29)
al Vsyst, cm/c				
Vdiast, cm/c	13,9± 0,48***	$13,04 \pm 0,58$	$10,55 \pm 0,72***$	12,39 ±
RI	$4,6 \pm 0,15$	$5,57 \pm 0,44$	$3,58 \pm 0,24$	0,51
	$0.7 \pm 0.02*$	$0,57 \pm 0,02$	$0,66 \pm 0,01***$	$4,89 \pm 0,3$
				$0,6 \pm 0,02$
a2 Vsyst, cm/c				
Vdiast, cm/c	$10,45 \pm 0,8$	10,90 ± 0,42**	7,35 ± 0,84***	$9,15 \pm 0,39$
RI	$3,28 \pm 0,25$	$4,82\pm0,31$	$2,57 \pm 0,27$	$3,73 \pm 0,15$
	0.68 ± 0.01 *	$0,56 \pm 0,02$	$0,65 \pm 0,01**$	$0,59 \pm 0,02$

INTERNATIONAL SCIENTIFIC JOURNAL

в1				
Vsyst, cm/c	3,8 ± 0,15**	3,44 ± 0,38***	$3,07 \pm 0,12*$	$4,35 \pm 0,14$
в2				
Vsyst, cm/c	$2,56 \pm 0,35*$	$3,32 \pm 0,1**$	$2,12 \pm 0,06*$	$3,96\pm0,21$
$\Delta Va1 a2$	- 33%	- 17%	- 42%	- 26%
syst				
$\triangle Vb1 b2$	- 29%	- 23%	- 33%	- 17%
syst				

Примечание:n - количество человек, a1, a2 -диаметры артерий первого и второго порядка, в1, в2 -диаметр вен первого и второго порядка;

 $\Delta Va1 a2$ — гемодинамичексий градиент между сосудами;*p<0,001,

p<0,01,**p<0,05 — статистически достоверно относительно показателей в группе контроля. На основании представленных данных математического моделирования ретинального кровообращения был определен гемодинамический градиент (ΔV syst) в виде разницы параметров максимальной систолической скорости кровотока в сосудах I и II порядка, показатель определен в относительных единицах.

Средний показатель ΔV systмежду артериями I и II порядка в группе контроля составил 26%, в I группе-33%, во II группе -17%, в III группе -42%.

Средний показатель ΔV systмежду венами I и II порядка составил в группе контроля 17%, в I группе-29%, во II группе -23%, в III группе - 33%.

выводы

Наиболее выраженное увеличение ΔV syst(в два раза) между венами I и II порядка имело место у пациентов с субклиническим атеросклерозом и АГ 1-2 степени (III группа). Разработанная нами математическая модель ретинального кровотока позволяет учитывать морфологические и функциональные особенности сосудистого русла глаза конкретного индивидуума. На основе данных, полученных с помощью калиброметрии ретинальных сосудов и дуплексного сканирования орбитальных сосудов, выполнена методика построения обобщенной структуры ретинального сосудистого русла глаза, включающая ветвипервого и второго порядка ЦАС и ЦВС с определением гемодинамических параметров в ретинальных сосудах. Разработан метод аналитической аппроксимации временного профиля линейной скорости в ЦАС, который позволяет определить значения параметров гемодинамики у каждого конкретного пациента. С помощью данной модели выполнено моделирование ретинального кровотока у здоровых лиц и у пациентов с атеросклерозом и АГ.

Следует отметить диагностическую значимость применения математического моделирования в оценке ретинальной гемоциркуляции, поскольку непосредственное измерение показателей гемодинамики в ретинальных сосудах не представляется возможным вследствие их малого диаметра Таким образом, разработаннаяв виде компьютерной программымодель, является инструментальным методом виртуальной оценки гемодинамических показателей, измерение которых невозможно с использованием других способов. Этот программный комплекс может быть использован для ранней диагностики нарушений ретинального кровообращения и оценки степени тяжести изменений гемодинамики при сердечно-сосудистойпатологии.

INTERNATIONAL SCIENTIFIC JOURNAL

Литература

- 1. Долиев, М. Н., Тулакова, Г. Э., Кадырова, А. М., Юсупов, З. А., & Жалалова, Д. З. ЭФФЕКТИВНОСТЬ КОМБИНИРОВАННОГО ЛЕЧЕНИЯ ПАЦИЕНТОВ С ЦЕНТРАЛЬНОЙ СЕРОЗНОЙ ХОРИОРЕТИНОПАТИЕЙ // Вестник Башкирского государственного медицинского университета, (2016). (2), 64-66.
- 2. Жалалова, Д. 3. Метод комбинированного лечения диабетической ретинопатии // Врачаспирант, (2009). 37(10), 864-868.
- 3. Сабирова, Д. Б., Тулакова, Г. Э., & Эргашева, Д. С. Комплексное лечение диабетической макулопатии путем применения пептидного биорегулятора" Ретиналамин" и лазеркоагуляции сетчатки // Точка зрения. Восток-Запад, (2017). (2), 114-116.
- 4. Саттарова, Х. С., Жалалова, Д. З., & Бектурдиев, Ш. С. Причины слепоты и слабовидения при сахарном диабете // Академический журнал Западной Сибири, (2011). (6), 27-28.
- 5. Тулакова, Г. Э., Сабирова, Д. Б., Хамракулов, С. Б., & Эргашева, Д. С. Отдалённые результаты ксеносклеропластики при миопии высокой степени // Научный форум. Сибирь, (2018). 4(1), 80-80.
- 6. Юсупов А. А. Особенности офтальмотонуса и клиническое течение глаукомы у лиц с артериальной гипотонией //Актуальные вопросы офтальмологии: Юбилейн. Всерос. научно-практ. конф., посв.
- 7. Юсупов А. А. Результативность склеропластики при врожденной близорукости //Вестн. офтальмологии. 1993. №. 5. С. 14-15.
- 8. Юсупов А.А. Патогенез, клиника и лечение врожденной близорукости. Автореф. Дисс... д. мед.наук. Москва, 1992 г.- С.12-13.
- 9. Van Buskirk E.M. Glaucomatous optic neuropathy. J. Glaucoma. 1994; Suppl. 3: 2-4.
- 10. Van Buskirk E.M., Cioffi G.A. Glaucomatous optic neuropathy. Am. J. Ophthalmol. 1992;113(4):447-452
- 11. Burgoyne C.F., Downs J.C., Bellezza A.J., Suh J.K., Hart R.T. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 2005; 24(1): 39-73.