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НЕПРЕРЫВНАЯ ФУНКЦИЯ ПОСТОЯННА 

Аннотация: В этой статье приведены примеры регулярного 

пространства, где каждая непрерывная функция постоянна. 
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Let  be an arbitrary infinite set of cardinality ,  be some 

point. Let’s define a family 

. 

It is easy to establish that  is a topological space that is denoted by 

. For every  the single-point set  is clopen, and the set  is 

closed, but not open. At the same time,  is an open neighborhood of  if and 

only if  contains , and it has a finite complement. A family consisting of all 

single-point sets , , and of all the sets  with a finite complement, 

form a base of the space . 
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Closure of a subset  (i. e. the set of all points , each 

open neighborhood of which intersects with ) in this case, is determined by 

equality 

 

Indeed, if  is finite and  and  the set  is an open 

neighborhood of  and ; if , that set  is an open 

neighborhood of  и . Thus, if  is finite, then every point of , not 

included in , has a neighborhood that does not intersect with . So, . 

If  is infinite and , then in the case  the set  is an open 

neighborhood of  and . This means that . Each neighborhood of 

a point  has the form , where  is finite set. Since  cannot be 

embedded into any finite set  by any way, then the sets  and  necessarily 

intersect. Hence, by definition of the closure, we have 

. 

It follows that: 

 an infinite subset of the space  is closed if and only if it 

contains ; 

 an intersection of any two closed infinite subsets of the space 

 is nonempty. 

The point  of the topological space  is called an accumulation point (a 

limit point) of the set , if , that is, each neighborhood  of a 

point  has at least one point  other than  belonging to the intersection: 

. 

Note that the point  is a unique accumulation point of the topological 

space . 
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For a topological space  interior  of a subset  (i. e. 

the set of all points , each of which has an open neighborhood lying in ) is 

defined by the equality 

 

Indeed, if  is finite, then for each , , its open neighborhood 

 contained in . If , then  is an open neighborhood 

of  and . So, in this case, . 

Let now  be infinite. Then for each , , its open 

neighborhood  contains in . But, each neighborhood  of , where 

 is a finite set, does not contain in . Therefore , i. e. . 

It follows that: 

 any two open subsets of the space  with a finite 

complement have a nonempty intersection; 

 a subset of the space  with infinite complement is open 

if and only if it does not contain . 

Constancy sets of continuous functions on spaces of the type  

For an arbitrary continuous function  and for every  a set 

 is an open neighborhood of a point  (as a 

preimage of an open set ). Then the property  

implies that the set  cannot be infinite. 

Hence every  is finite, . Therefore  is no more than 

countably. Also, since  for every , than . For a point 

 = 
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=  = 

=  

we have . That is why  for 

all . 

Thus, we establish the following properties.  For an arbitrary continuous 

function  there is a set  containing at most a countable number of 

points such that  and  at . 

Or, in another words: 

 For an arbitrary continuous function  a set  of all points 

 such that , has no more than a countable number of points. At 

the same time, it is clear that . 

Let , , where . Let  and  be 

accumulation points, respectively, of spaces  and . Let us put 

. 

For  let us define a set 

 

and put 

. 

It is clear that . 

For every , and for every  the following equality 

holds 

.      (1) 

By virtue of the property (20) for a subset 
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we have . Therefore, . 

Now, choose an arbitrary  and define a set  

.    (2) 

Again  implies that . 

Put 

. 

Let . By virtue of (1) and (2), for any point , 

such that , we have  

. 

A set  is everywhere dense in a space  

. Consequently, from  it follows that . 

Thus, the following property is proved. 

 For each continuous function  there exists such a real number 

, such sets , , with ,  and 

 

at . 

An example of a regular space on which every continuous function is constant 

Let , , where . Let  and  be 

accumulation points, respectively, of the spaces  and . Let us put 

. 

For each positive integer  we define sets 

 and . 

Let 

. 
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Take elements , , , and we introduce a topology on the set 

 using the neighborhood system , where for any 

 a collection  is a family of all open subsets in  containing , 

, where   

and 

, where . 

The resulting space  is a completely regular space. It is clear that  is a 

subspace of . Let us define the equivalence relation  on , the equivalence 

classes according to which have the form 

 for  and 

odd , 

 for  and 

even , 

 for ,  and every , 

 and . Therefore, the quotient space  is obtained by 

identifying the corresponding points in , ,  and 

 for each odd  and identifying the corresponding points in , 

,  and  for each even . Here as above 

, 

. 

It is clear that  

 and  for every odd , 

 and  for every even . 

Full preimages of points under natural mapping  are one-point or 

four-point sets. Therefore, each point of the space  (that is, each equivalence 
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class) forms a closed set, which means the space  is a -space. Moreover, the 

space  is a -space. Consequently, the space  is regular. 

Take points ,  and closed sets  and 

. By the construction of the equivalent relation , we have 

. It is clear that  and . Now it remains to note that for each 

continuous function , such that  it occurs 

. 

Now let  be an arbitrary regular space and  be the above defined space. 

We provide the product  with the topology generated with the topology 

of neighborhoods: 

of the view  for points , , where 

 are all possible open sets such that ; 

of the view  for point , where  is a 

neighborhood of the point  in the space , а  is a neighborhood of the point  in 

the space . 

Since  is closed in  and  is closed in , the set  is closed in the 

space . We identify  of the space  to a point. Then every 

continuous function  is constant on a regular space . 
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