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IMPUMEP PEI'YJIAPHOI'O TIPOCTPAHCTBA, HA KOTOPOM JIFOBAS
HEITPEPBIBHASA ®YHKIIUSA IIOCTOSHHA
Annomayusa: B osmoti cmamve npugedeHvl npumepvl  pe2VisApPHO20
NPOCMPAHCMBA, 20e Kaxcoas Henpepvi8Has PYHKYUS NOCMOSHHA.
Knroueevle cnoea: pezynsipnoe npocmpancmeo, HenpepvléHas @OYHKYU,

KOHCmaHma.

Let X be an arbitrary infinite set of cardinality m = X,, x, € X be some

point. Let’s define a family
t={UcX:xg @UIU{U: X\ U| < oo}.

It is easy to establish that (X, 1) is a topological space that is denoted by
A(m). For every x € X\ {x,] the single-point set {x} is clopen, and the set {x,} is
closed, but not open. At the same time, I/ is an open neighborhood of x, if and
only if U contains x,, and it has a finite complement. A family consisting of all
single-point sets {x}, x € X\ {x,}, and of all the sets I/ with a finite complement,

form a base of the space(X, 7).
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Closure of a subset A = A(m) = (X, ) (i. e. the set of all points x € X, each
open neighborhood of which intersects with A) in this case, is determined by
equality
I { A, i.f A i_s lfini_te_,

AU{x,}, ifAisinfinite.

Indeed, if A is finite and x € 4 and x # x, the set {x} is an open
neighborhood of x and {x} N4 =0; if x, & 4, that set U= X" A is an open
neighborhood of x, u U N A = @. Thus, if A is finite, then every point of X, not
included in 4, has a neighborhood that does not intersect with 4. So, 4 = A.

If A is infinite and x & A4, then in the case x # x, the set {x} is an open
neighborhood of x and {x} n A = @. This means that x & A. Each neighborhood of
a point x, has the form U = X\ F, where F is finite set. Since A cannot be
embedded into any finite set F by any way, then the sets I/ and A necessarily
intersect. Hence, by definition of the closure, we have

A=AU{x,}

It follows that:

(C1,) an infinite subset of the space A(m) = (X, 1) is closed if and only if it
contains x,;

(Cl,) an intersection of any two closed infinite subsets of the space
A(m) = (X, 1) is nonempty.

The point x of the topological space X is called an accumulation point (a
limit point) of the set A = X, if x € A\ {x}, that is, each neighborhood Ox of a
point x has at least one point y other than x belonging to the intersection:

yeANnOx.

Note that the point x, is a unique accumulation point of the topological

space A(m) = (X, 1).
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For a topological space A(m) = (X, t) interior IntA of asubset A c X (i. e.
the set of all points x € A, each of which has an open neighborhood lying in 4) is

defined by the equality

A, if X \ A s finite,
A\ {x,}, ifX\ Ais infinite.

IntA = {

Indeed, if X \ A is finite, then for each x € A, x # x,, its open neighborhood
{x} contained in A. If x, € A, then U = X\ (X\ 4) = A is an open neighborhood
of x, and U < A. So, in this case, IntA = A.

Let now X\ A be infinite. Then for each x € 4, x # x,, itS open
neighborhood {x} contains in A. But, each neighborhood U = X %\ F of x,, where
F is a finite set, does not contain in A. Therefore x, &€ IntA, i.e. IntA= A\ {x,}.

It follows that:

(Int,) any two open subsets of the space A(m) = (X,t) with a finite
complement have a nonempty intersection;

(Int,) a subset of the space A(m) = (X, t) with infinite complement is open
if and only if it does not contain x,,.

Constancy sets of continuous functions on spaces of the type A ()

For an arbitrary continuous function @:X — IR and for every i € N a set

((qp[xuj = 0(x,) +- )) IS an open neighborhood of a point x, (as a
preimage of an open set (qp(xu)—%, qp[xuj+%)). Then the property (Int,)

implies that the set X, = X \ ¢+ ((qp [xu)—%, @ (xg)+ %)) cannot be infinite.
Hence every X; is finite, i = 1,2,... Therefore X, = UMXi IS no more than
iE

countably. Also, since x, € X; foreveryi =1,2,..., than x, € X,. For a point

EX\K =X\ Y X = AH\K)
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= EDM (@_1 ((@Exuj - %; @(xo) + %))) =
=7 (N (00r0) — 1, 0(0) +7))

we have @(x) € nm (qp(xﬂj — %, o(x,) + 1) That is why @(x) = @(x,) for
ie i L

all x € X\ X,.

Thus, we establish the following properties. (1,) For an arbitrary continuous
function @: X — R there is a set X, = X containing at most a countable number of
points such that x, & X, and ¢(x) = @(x,) at x € X \ X,.

Or, in another words:

(2,) For an arbitrary continuous function ¢: X — R a set X, of all points
x € X such that ¢(x) # @(x,), has no more than a countable number of points. At
the same time, it is clear that x, & X,.

Let X =A(m), ¥ =Am), where ¥, <m<n. Let x, and y, be
accumulation points, respectively, of spaces X and Y. Let us put
Z=XxVY\{(xg,v)}

For x € X\ {x,} let us define a set

Y= el:f(x,y)# fl,y)} < V' \ {p}
and put

b= U Kk
0 xex \fxg} DE]

Itisclearthat ¥, c ¥ \ {y,}.
Forevery x € X\ {x,}, and for every y € ¥ \ ¥, the following equality
holds
fGoy) =Fx ). (1)
By virtue of the property (2,) for a subset
L) ={xy) e i3 XY:f(x,y) # f(x,10)} = x} XY
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we have |¥, (x)| =< X,. Therefore, |¥,| < m.
Now, choose an arbitrary y € ¥ %\ (¥, U {y,}) and define a set
Xo =W eX:f(x, ) # fxo, 7} = X\ {xo}. (@)
Again (2,) implies that | X, | < X,.
Put
Zy =Xy XY) U (X X Tp).
Let r = f(x,,¥). By virtue of (1) and (2), for any point (x,y) € Z\ Z,,

such that x = x,, we have

flxy) 5 f(x, ) 5 flx¥) 5 fxq,¥) =7.

A set (Z\Z)\ (Lo} x (Y \{3}) is everywhere dense in a space
Z \ Z,. Consequently, from (x,,y) € Z \ Z, it follows that f (x,,v) = r.

Thus, the following property is proved.

(3,) For each continuous function f:Z — IR there exists such a real number
r,suchsets X, © X\ {x,}, ¥; € ¥\ {x,}, with | X,| = X, |[¥,] = mand

floy) =r

at (x,y) e Z\ Z,.

An example of a regular space on which every continuous function is constant
Let X = A(m), ¥ = A(n), where ¥, < m < n. Let x, and y, be
accumulation points, respectively, of the spaces X and Y. Let us put
Z=XXY\{(x5,70)}
For each positive integer i we define sets
Z, =Zx{i}andZ_, = Z x {—i}.
Let
27 =(B7Z, ZHU(DZ, Z2_,).
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Take elements z, z' € Z**, z # z', and we introduce a topology on the set
H*=Z2Z""U{z,z'} using the neighborhood system {B(x)},.cy+, Where for any
x € Z** acollection B(x) is a family of all open subsets in Z** containing x,

B(z) = (U;(2)}2,, where U,(z) = H*\ (B2, Z_, v {z'}u Ui, Z)
and
B(z") = {U;(z")}72,, where U;(z") = H"\ (B2, Z U{z} VUi, Z_)).

The resulting space H* is a completely regular space. It is clear that Z** is a
subspace of H*. Let us define the equivalence relation R on H*, the equivalence
classes according to which have the form

{00y, —1—1),(x, vy, —1),(x, ¥, 1), (x, vy, 1 + 1)} for x € X\ {x,}and
odd i,

{(xp,v,—1— 1), (xq,v,—1),(x0,v, 1), (xq,y,i + 1)} fory € X\ {1} and
even i,

{(x,v,i)}forx € X\ {xo}, vy € X\ {y,} and every i,

{z} and {z'}. Therefore, the quotient space H = H*/R is obtained by
identifying the corresponding pointsin A x {i}, Ax {i + 1}, A x {—i}and
A X {—i — 1} for each odd i and identifying the corresponding points in B x {i},
Bx{i+1},Bx{—i}land B x {—i — 1} for each even i. Here as above

A= [(x,yﬂj: x EX\{x,}tcZ,
B ={(x0,y): yEY\{M}} = Z.
Itis clear that
z, 2 g Ax{itand z, z' & A x {—i} for every odd i,
z, 2@ Bx{itandz, z' & B x {—i} for every even .
Full preimages of points under natural mapping q: H* — H are one-point or

four-point sets. Therefore, each point of the space H (that is, each equivalence
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class) forms a closed set, which means the space H is a T,-space. Moreover, the
space H is a T, -space. Consequently, the space H is regular.

Take points t =q(z), t'=q(z’) and closed sets F =q(4 x{1}) and
F' = q(A x {—1}). By the construction of the equivalent relation R, we have
F'=F. Itis clear that t ¢ F and t" & F. Now it remains to note that for each
continuous  function f:T —[0,1], such that f(F)={r} it occurs
fO=r@)=r.

Now let S be an arbitrary regular space and H be the above defined space.
We provide the product ¥ = § X H with the topology generated with the topology

of neighborhoods:

of the view 0(s,h) = {s} x V for points (s,h) €S X H, h +t, where
V < H\ {t} are all possible open sets such that h € V;
of the view O(s,t) = U ({s'}x V) for point (s,t) € S X H, where U is a
s'eu

neighborhood of the point s in the space S, a V is a neighborhood of the point ¢ in
the space H.

Since Sisclosed in S and {t'} is closed in H, the set § x {t'}is closed in the
space ¥ =5 x H. We identify S x {t'} of the space ¥ to a point. Then every
continuous function f: H(S) — R is constant on a regular space §.

Referenses
1. H. Herrlich. Wenn sind alle statigen Abbildungen in ¥ konstant. Math.

Zeitschr. 90(1965), P. 152-154.
2. domenko A.T. Harnsonas I'eomerpus u Tomnomorus,
MatemaTtnueckue o0Opa3bl B peasibHoM mup. — M.:MI'Y, 1998 — c. 284.

3. 5) Aramyponosa.ll, MaapaemoBa A. Tomnosnoruk ¢dazo 6azacu. //nm

Capuammanapu, 2021 #wr, Ne 9, 22-24 6.

242



SCTENCE AND INNOVATION 2022

INTERNATIONAL SCIENTIFIC JOURNAL N(_) 1

4. Zaitov A. A. Geometriya. Chirchiq davlat pedagogika instituti
elektron platformasi.

5. J.P.AtamypanoBa. PekoMeHganum no caMoCTOSTENbHOMY U3Y4EHHUIO
TeMbl «Tonosorndueckue npoctpancTBa. OTKPBIThIE U 3aMKHYThIE MHOKECTBAY.
//Hayunbliii BecTHUK TalllKeHTCKOTO roCy1apCTBEHHOTO MEIarorHuecKoro

yauBepcuteta. 2020, Ne 12, ctp. 271-274.

243



